
TMTM

Cray Fortran Reference Manual

S–3901–71

© 1995, 1997-2009 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

The CF90 compiler includes United States software patents 5,257,696, 5,257,372, and 5,361,354.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights.
Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR
252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S.
Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, and UNICOS are federally registered trademarks and Active Manager, Cray Apprentice2, Cray Apprentice2 Desktop,
Cray C++ Compiling System, Cray CX1, Cray Fortran Compiler, Cray Linux Environment, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+,
Cray SHMEM, Cray Threadstorm, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4, Cray XT5,
Cray XT5h, Cray XT5m, CrayDoc, CrayPort, CRInform, ECOphlex, Libsci, NodeKARE, RapidArray, UNICOS/lc, UNICOS/mk, and
UNICOS/mp are trademarks of Cray Inc.

AMD and AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc. TotalView is a trademark of TotalView Technology, LLC.
ISO is a trademark of International Organization for Standardization (Organisation Internationale de Normalisation). SUSE is a trademark of
Novell, Inc. Linux is a trademark of Linus Torvalds. PGI is a trademark of The Portland Group Compiler Technology, STMicroelectronics, Inc.
GNU is a trademark of The Free Software Foundation. Sun is a trademark of Sun Microsystems, Inc. in the United States and other countries.
IBM is a trademark of International Business Machines Corporation. UNIX, the “X device,” X Window System, and X/Open are trademarks of
The Open Group in the United States and other countries. All other trademarks are the property of their respective owners.

The UNICOS, UNICOS/mk, and UNICOS/mp operating systems are derived from UNIX System V. These operating systems are also based in
part on the Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

Version 5.6 Published March 2007 Supports the Cray Fortran compiler 5.6 release running on Cray X1 series systems.

Version 6.0 Published September 2007 Supports the Cray Fortran compiler 6.0 release running on Cray X1 series and Cray X2 systems.

Version 7.0 Published December 2008 Supports the Cray Compiling Environment 7.0 release running on Cray XT systems.

Version 7.1 Published June 2009 Supports the Cray Compiling Environment 7.1 release running on Cray XT systems.

New Features

Cray Fortran Reference Manual S–3901–71

• New -h [no]autothread option enables or disables automatic threading optimization when
compiling. See -h [no]autothread on page 34.

• New -h func_trace option improves support of CrayPat performance analysis. See -h
func_trace on page 36.

• New -h page_align_allocate option causes allocation of arrays to be aligned on a memory page
boundary. See -h page_align_allocate on page 37.

• New -h threadn and -O threadn options control the level of OpenMP and autothreading
optimization when compiling. See -h threadn on page 38 and -O threadn on page 56.

• The -h smpn and -O smpn options are superseded by -h threadn and have been removed from
this manual.

• New LOOP_INFO PREFER_THREAD and PREFER_NOTHREAD directives indicate preferences
for turning threading on or off for selected loops. See Autothreading for Loops: LOOP_INFO
PREFER_[NO]THREAD on page 99.

• New AUTOTHREAD and NOAUTOTHREAD directives control automatic threading for selected blocks of
code. See Control Autothreading: [NO]AUTOTHREAD on page 116.

• The Cray Fortran Compiler now fully supports Fortran submodules. See Submodules on page 173.

• The maximum allowed cache layer buffer size is now 2,147,483,647 bytes. See The cache Layer on
page 250.

Contents

Page

Introduction [1] 19

1.1 The Cray Fortran Programming Environment 19

1.2 Cray Fortran Compiler Messages 20

1.3 Document-specific Conventions . 21

1.4 Fortran Standard Compatibility . 21

1.4.1 Fortran 95 Compatibility . 21

1.4.2 Fortran 90 Compatibility . 22

1.5 Related Fortran Publications . 22

Invoking the Cray Fortran Compiler [2] 23

2.1 -A module_name [, module_name] 24

2.2 -b bin_obj_file . 24

2.3 -c . 25

2.4 -d disable and -e enable . 25

2.5 -D identifier [=value] . 32

2.6 -f source_form . 32

2.7 -F . 32

2.8 -g . 33

2.9 -G debug_lvl . 33

2.10 -h arg . 34

2.10.1 -h [no]autothread 34

2.10.2 -h cachen . 34

2.10.3 -h [no]caf . 34

2.10.4 -h cpu=target_system . 35

2.10.5 -h display_opt . 35

2.10.6 -h [no]dwarf . 35

2.10.7 -h func_trace . 36

2.10.8 -h keepfiles . 36

2.10.9 -h [no]msgs . 36

2.10.10 -h [no]negmsgs . 36

S–3901–71 5

Cray Fortran Reference Manual

Page

2.10.11 -h network=nic . 37

2.10.12 -h [no]omp . 37

2.10.13 -h [no]omp_trace 37

2.10.14 -h page_align_allocate 37

2.10.15 -h profile_generate 37

2.10.16 -h [no]second_underscore 38

2.10.17 -h threadn . 38

2.11 -I incldir . 38

2.12 -J dir_name . 39

2.13 -l libname . 39

2.14 -L ldir . 39

2.15 -m msg_lvl . 39

2.16 -M msgs . 40

2.17 -N col . 41

2.18 -O opt [,opt] ... 41

2.18.1 -O n . 43

2.18.2 -O [no]aggress . 43

2.18.3 -O cachen . 44

2.18.4 -O fpn . 44

2.18.5 -O fusionn . 46

2.18.6 -O inlinelib . 46

2.18.7 -O ipan and -O ipafrom=source[:source] 47

2.18.7.1 Automatic Inlining . 48

2.18.7.2 Explicit Inlining . 49

2.18.7.3 Combined Inlining . 50

2.18.8 -O [no]modinline . 51

2.18.9 -O [no]msgs . 51

2.18.10 -O [no]negmsgs . 52

2.18.11 -O nointerchange 52

2.18.12 -O [no]omp . 52

2.18.13 -O [no]overindex 52

2.18.14 -O [no]pattern . 53

2.18.15 -O scalarn . 54

2.18.16 -O shortcircuitn 54

2.18.17 -O threadn . 56

2.18.18 -O unrolln . 57

2.18.19 -O vectorn . 57

6 S–3901–71

Contents

Page

2.18.20 -O [no]zeroinc . 58

2.19 -o out_file . 58

2.20 -p module_site[,module_site] 58

2.21 -Q path . 61

2.22 -r list_opt . 62

2.23 -R runchk . 64

2.24 -s size . 67

2.24.1 Different Default Data Size Options on the Command Line 68

2.24.2 Pointer Scaling Factor . 69

2.25 -S asm_file . 70

2.26 -T . 70

2.27 -U identifier [,identifier] ... 70

2.28 -v . 71

2.29 -V . 71

2.30 -Wa"assembler_opt" . 71

2.31 -Wr"lister_opt" . 71

2.32 -x dirlist . 71

2.33 -X npes . 72

2.34 -Yphase,dirname . 73

2.35 -- . 73

2.36 sourcefile[sourcefile.suffix ...] 74

Setting Environment Variables [3] 75

3.1 Compiler and Library Environment Variables 75

3.1.1 CRAY_FTN_OPTIONS Environment Variable 76

3.1.2 CRAY_PE_TARGET Environment Variable 76

3.1.3 FORMAT_TYPE_CHECKING Environment Variable 76

3.1.4 FORTRAN_MODULE_PATH Environment Variable 77

3.1.5 LISTIO_PRECISION Environment Variable 77

3.1.6 NLSPATH Environment Variable 77

3.1.7 NPROC Environment Variable 78

3.1.8 TMPDIR Environment Variable 78

3.1.9 ZERO_WIDTH_PRECISION Environment Variable 78

3.2 OpenMP Environment Variables . 78

3.3 Run Time Environment Variables 79

3.3.1 aprun Resource Limits . 79

S–3901–71 7

Cray Fortran Reference Manual

Page

Using Cray Fortran Directives [4] 81

4.1 Using Directives . 85

4.1.1 Directive Lines . 85

4.1.2 Range and Placement of Directives 86

4.1.3 Interaction of Directives with the -x Command Line Option 87

4.1.4 Command Line Options and Directives 88

4.2 Vectorization Directives . 89

4.2.1 Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE 90

4.2.2 Limit Optimizations: HAND_TUNED 91

4.2.3 Ignore Vector Dependencies: IVDEP 91

4.2.4 Specify Scalar Processing: NEXTSCALAR 92

4.2.5 Request Pattern Matching: [NO]PATTERN 92

4.2.6 Declare an Array with No Repeated Values: PERMUTATION 93

4.2.7 Designate Loop Nest for Vectorization: PREFERVECTOR 94

4.2.8 Conditional Density: PROBABILITY 94

4.2.9 Allow Speculative Execution of Memory References within Loops: SAFE_ADDRESS . . . 95

4.2.10 Allow Speculative Execution of Memory References and Arithmetic Operations:
SAFE_CONDITIONAL . 96

4.2.11 Designate Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP128 97

4.2.12 Provide More Information for Loops: LOOP_INFO 97

4.2.13 Autothreading for Loops: LOOP_INFO PREFER_[NO]THREAD 99

4.2.14 Unroll Loops: [NO]UNROLL 99

4.2.15 Enable and Disable Vectorization: [NO]VECTOR 102

4.2.16 Enable or Disable, Temporarily, Soft Vector-pipelining: [NO]PIPELINE 102

4.3 Inlining Directives . 103

4.3.1 Disable or Enable Cloning for a Block of Code: [NO]CLONE and RESETCLONE 103

4.3.2 Disable or Enable Inlining for a Block of Code: [NO]INLINE and RESETINLINE . . . 104

4.3.3 Specify Inlining for a Procedure: INLINEALWAYS and INLINENEVER 104

4.3.4 Create Inlinable Templates for Module Procedures: [NO]MODINLINE 105

4.4 Scalar Optimization Directives . 106

4.4.1 Control Loop Interchange: [NO]INTERCHANGE 106

4.4.2 Control Loop Collapse: [NO]COLLAPSE 108

4.4.3 Determine Register Storage: NOSIDEEFFECTS 109

4.4.4 Suppress Scalar Optimization: SUPPRESS 110

4.5 Local Use of Compiler Features . 111

4.5.1 Check Array Bounds: [NO]BOUNDS 111

4.5.2 Specify Source Form: FREE and FIXED 113

4.6 Storage Directives . 113

8 S–3901–71

Contents

Page

4.6.1 Permit Cache Blocking: BLOCKABLE Directive 113

4.6.2 Declare Cache Blocking: BLOCKINGSIZE and NOBLOCKING Directives 114

4.6.3 Request Stack Storage: STACK 115

4.7 Miscellaneous Directives . 116

4.7.1 Control Autothreading: [NO]AUTOTHREAD 116

4.7.2 Allocate Cache: CACHE . 117

4.7.3 Non-temporal Reads and Writes: CACHE_NT 117

4.7.4 Specify Array Dependencies: CONCURRENT 118

4.7.5 Fuse Loops: [NO]FUSION 118

4.7.6 Create Identification String: ID 119

4.7.7 Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR 120

4.7.8 External Name Mapping: NAME 121

4.7.9 Preprocess Include File: PREPROCESS 122

4.7.10 Specify Weak Procedure Reference: WEAK 122

Source Preprocessing [5] 125

5.1 General Rules . 125

5.2 Directives . 126

5.2.1 #include Directive . 126

5.2.2 #define Directive . 127

5.2.3 #undef Directive . 128

5.2.4 # (Null) Directive . 129

5.2.5 Conditional Directives . 129

5.2.5.1 #if Directive . 130

5.2.5.2 #ifdef Directive . 130

5.2.5.3 #ifndef Directive . 131

5.2.5.4 #elif Directive . 131

5.2.5.5 #else Directive . 131

5.2.5.6 #endif Directive . 131

5.3 Predefined Macros . 132

5.4 Command Line Options . 133

Using the OpenMP Fortran API [6] 135

6.1 Limitations . 135

6.2 Differences . 136

6.3 Optimizations . 138

6.4 Compiler Options . 139

6.5 aprun Options . 140

S–3901–71 9

Cray Fortran Reference Manual

Page

Cray Fortran Defined Externals [7] 141

7.1 Conformance Checks . 141

Cray Fortran Language Extensions [8] 143

8.1 Characters, Lexical Tokens, and Source Form 143

8.1.1 Characters Allowed in Names 143

8.1.2 Switching Source Forms . 143

8.1.3 Continuation Line Limit . 144

8.1.4 D Lines in Fixed Source Form 144

8.2 Types . 144

8.2.1 Alternate Form of LOGICAL Constants 144

8.2.2 Cray Pointer Type . 144

8.2.3 Cray Character Pointer Type 149

8.2.4 Boolean Type . 149

8.2.5 Alternate Form of ENUM Statement 149

8.2.6 TYPEALIAS Statement . 150

8.3 Data Object Declarations and Specifications 150

8.3.1 Attribute Specification Statements 151

8.3.1.1 BOZ Constants in DATA Statements 151

8.3.1.2 Attribute Respecification 151

8.3.1.3 AUTOMATIC Attribute and Statement 152

8.3.2 IMPLICIT Statement . 153

8.3.2.1 IMPLICIT Extensions 153

8.3.3 Storage Association of Data Objects 153

8.3.3.1 EQUIVALENCE Statement Extensions 153

8.3.3.2 COMMON Statement Extensions 153

8.4 Expressions and Assignment . 154

8.4.1 Expressions . 154

8.4.1.1 Rules for Forming Expressions 154

8.4.1.2 Intrinsic and Defined Operations 154

8.4.1.3 Intrinsic Operations . 155

8.4.1.4 Bitwise Logical Expressions 156

8.4.2 Assignment . 157

8.5 Execution Control . 158

8.5.1 STOP Code Extension . 158

8.6 Input/Output Statements . 158

8.6.1 File Connection . 159

8.6.1.1 OPEN Statement . 159

10 S–3901–71

Contents

Page

8.7 Error, End-of-record, and End-of-file Conditions 159

8.7.1 End-of-file Condition and the END-specifier 159

8.7.1.1 Multiple End-of-file Records 159

8.8 Input/Output Editing . 159

8.8.1 Data Edit Descriptors . 159

8.8.1.1 Integer Editing . 159

8.8.1.2 Real Editing . 160

8.8.1.3 Logical Editing . 160

8.8.1.4 Character Editing . 160

8.8.2 Control Edit Descriptors . 161

8.8.2.1 Q Editing . 161

8.8.3 List-directed Formatting . 161

8.8.3.1 List-directed Input . 161

8.8.4 Namelist Formatting . 162

8.8.4.1 Namelist Extensions . 162

8.8.5 I/O Editing . 162

8.9 Program Units . 165

8.9.1 Main Program . 165

8.9.1.1 Program Statement Extension 165

8.9.2 Block Data Program Units . 165

8.9.2.1 Block Data Program Unit Extension 165

8.10 Procedures . 165

8.10.1 Procedure Interface . 165

8.10.1.1 Interface Duplication . 165

8.10.2 Procedure Definition . 165

8.10.2.1 Recursive Function Extension 165

8.10.2.2 Empty CONTAINS Sections 165

8.11 Intrinsic Procedures and Modules 166

8.11.1 Standard Generic Intrinsic Procedures 166

8.11.1.1 Intrinsic Procedures . 166

8.12 Exceptions and IEEE Arithmetic 169

8.12.1 The Exceptions . 169

8.12.1.1 IEEE Intrinsic Module Extensions 169

8.13 Interoperability with C . 169

8.13.1 Interoperability Between Fortran and C Entities 169

8.13.1.1 BIND(C) Syntax . 169

8.14 Coarrays . 170

S–3901–71 11

Cray Fortran Reference Manual

Page

8.15 Compiling and Executing Programs Containing Coarrays 171

8.15.1 ftn and aprun Options Affecting Coarrays 171

8.15.2 Using the CrayTools Tool Set with Coarray Programs 172

8.15.2.1 Debugging Programs Containing Coarrays (Deferred implementation) 172

8.15.2.2 Analyzing Coarray Program Performance 172

8.15.3 Interoperating with Other Message Passing and Data Passing Models 172

8.15.4 Optimizing Programs with Coarrays 173

8.16 Submodules . 173

Obsolete Features [9] 175

9.1 IMPLICIT UNDEFINED . 176

9.2 Type Statement with *n . 176

9.3 BYTE Data Type . 176

9.4 DOUBLE COMPLEX Statement 177

9.5 STATIC Attribute and Statement 177

9.6 Slash Data Initialization . 179

9.7 DATA Statement Features . 179

9.8 Hollerith Data . 179

9.8.1 Hollerith Constants . 180

9.8.2 Hollerith Values . 181

9.8.3 Hollerith Relational Expressions 181

9.9 PAUSE Statement . 182

9.10 ASSIGN, Assigned GO TO Statements, and Assigned Format Specifiers 182

9.10.1 Form of the ASSIGN and Assigned GO TO Statements 183

9.10.2 Assigned Format Specifiers 184

9.11 Two-branch IF Statements . 184

9.11.1 Two-branch Arithmetic IF 185

9.11.2 Indirect Logical IF . 185

9.12 Real and Double Precision DO Variables 185

9.13 Nested Loop Termination . 185

9.14 Branching into a Block . 186

9.15 ENCODE and DECODE Statements 186

9.15.1 ENCODE Statement . 186

9.15.2 DECODE Statement . 187

9.16 BUFFER IN and BUFFER OUT Statements 188

9.17 Asterisk Delimiters . 191

9.18 Negative-valued X Descriptor . 191

9.19 A and R Descriptors for Noncharacter Types 191

12 S–3901–71

Contents

Page

9.20 H Edit Descriptor . 192

9.21 Obsolete Intrinsic Procedures . 193

Cray Fortran Deferred Implementation and Optional Features [10] 201

10.1 ISO_10646 Character Set . 201

10.2 Restrictions on Unlimited Polymorphic Variables 201

10.3 ENCODING= in I/O Statements 201

10.4 Allocatable Assignment (Optionally Enabled) 201

Cray Fortran Implementation Specifics [11] 203

11.1 Companion Processor . 203

11.2 INCLUDE Line . 203

11.3 INTEGER Kinds and Values . 203

11.4 REAL Kinds and Values . 203

11.5 DOUBLE PRECISION Kinds and Values 204

11.6 LOGICAL Kinds and Values . 204

11.7 CHARACTER Kinds and Values 204

11.8 Cray Pointers . 204

11.9 ENUM Kind . 204

11.10 Storage Issues . 204

11.10.1 Storage Units and Sequences 205

11.10.2 Static and Stack Storage . 205

11.10.3 Dynamic Memory Allocation 206

11.11 Finalization . 207

11.12 ALLOCATE Error Status . 207

11.13 DEALLOCATE Error Status . 207

11.14 ALLOCATABLE Module Variable Status 207

11.15 Kind of a Logical Expression . 208

11.16 STOP Code Availability . 208

11.17 Stream File Record Structure and Position 208

11.18 File Unit Numbers . 208

11.19 OPEN Specifiers . 208

11.20 FLUSH Statement . 209

11.21 Asynchronous I/O . 209

11.22 REAL I/O of an IEEE NaN . 209

11.22.1 Input of an IEEE NaN . 209

11.22.2 Output of an IEEE NaN . 210

11.23 List-directed and NAMELIST Output Default Formats 210

S–3901–71 13

Cray Fortran Reference Manual

Page

11.24 Random Number Generator . 211

11.25 Timing Intrinsics . 211

11.26 IEEE Intrinsic Modules . 211

Enhanced I/O: Using the Assign Environment [12] 213

12.1 Understanding the assign Environment 213

12.1.1 Assign Objects and Open Processing 214

12.1.2 assign Command Syntax 215

12.1.3 Using the Library Routines 218

12.2 Tuning File Connection Behavior 219

12.2.1 Using Alternative File Names 219

12.2.2 Specifying File Structure . 220

12.2.2.1 Unblocked File Structure 222

12.2.2.2 assign -s sbin File Processing 223

12.2.2.3 assign -s bin File Processing 223

12.2.2.4 assign -s u File Processing 224

12.2.2.5 text File Structure . 224

12.2.2.6 cos or blocked File Structure 224

12.2.3 Specifying Buffer Behavior 226

12.2.3.1 Default Buffer Sizes . 227

12.2.3.2 Library Buffering . 228

12.2.3.3 System Cache . 229

12.2.3.4 Unbuffered I/O . 229

12.2.4 Specifying Foreign File Formats 229

12.2.5 Specifying Memory Resident Files 230

12.2.6 Using and Suppressing File Truncation 230

12.3 Defining the Assign Environment File 231

12.4 Using Local Assign Mode . 231

Using Flexible File I/O (FFIO) [13] 233

13.1 Understanding FFIO . 233

13.2 Using FFIO Layers . 235

13.2.1 Available I/O Layers . 236

13.2.2 Specifying Layered I/O Options 237

13.3 Using FFIO with Common File Structures 238

13.3.1 Reading and Writing Text Files 238

13.3.2 Reading and Writing Unblocked Files 239

13.3.3 Reading and Writing Fixed-length Records 240

14 S–3901–71

Contents

Page

13.3.4 Reading and Writing Blocked Files 240

13.4 Tips for Enhancing I/O Performance 240

13.4.1 Buffer Size Considerations 240

13.4.2 Removing Blocking . 240

13.4.2.1 The syscall Layer 241

13.4.2.2 The bufa and cachea Layers 241

13.4.2.3 The mr Layer . 241

13.4.2.4 The global Layer (Deferred Implementation) 242

13.4.2.5 The cache Layer . 242

13.5 Sample Programs . 244

FFIO Layer Reference [14] 247

14.1 Characteristics of Layers . 248

14.2 The bufa Layer . 249

14.3 The cache Layer . 250

14.4 The cachea Layer . 252

14.5 The cos Blocked Layer . 253

14.6 The event Layer . 254

14.7 The f77 Layer . 256

14.8 The fd Layer . 257

14.9 The global Layer (Deferred Implementation) 257

14.10 The ibm Layer . 259

14.11 The mr Layer . 261

14.12 The null Layer . 264

14.13 The syscall Layer . 264

14.14 The system Layer . 265

14.15 The text Layer . 265

14.16 The user and site Layers . 266

14.17 The vms Layer . 267

Creating a user Layer [15] 271

15.1 Internal Functions . 271

15.1.1 The Operations Structure . 272

15.1.2 FFIO and the stat Structure 273

15.2 user Layer Example . 274

Named Pipe Support [16] 293

16.1 Piped I/O Example without End-of-file Detection 294

16.2 Detecting End-of-file on a Named Pipe 296

S–3901–71 15

Cray Fortran Reference Manual

Page

16.3 Piped I/O Example with End-of-file Detection 296

Glossary 299

Examples
Example 1. Unrolling outer loops . 100

Example 2. Illegal unrolling of outer loops 101

Example 3. Unrolling nearest neighbor pattern 101

Example 4. Local assign mode . 232

Example 5. Unformatted direct mr with unblocked file 244

Example 6. Unformatted sequential mr with blocked file 245

Example 7. No EOF Detection: program writerd 295

Example 8. No EOF Detection: program readwt 295

Example 9. EOF Detection: program writerd 297

Example 10. EOF Detection: program readwt 297

Tables
Table 1. Compiling Options . 25

Table 2. Floating-point Optimization Levels 45

Table 3. Automatic Inlining Specifications 49

Table 4. File Types . 50

Table 5. Scaling Factor in Pointer Arithmetic 69

Table 6. -Yphase Definitions . 73

Table 7. Directives . 81

Table 8. Explanation of Ignored TKRs 121

Table 9. Operand Types and Results for Intrinsic Operations 155

Table 10. Cray Fortran Intrinsic Bitwise Operators and the Allowed Types of their Operands 156

Table 11. Data Types in Bitwise Logical Operations 156

Table 12. Values for Keyword Specifier Variables in an OPEN Statement 159

Table 13. Default Fractional and Exponent Digits 160

Table 14. Summary of Control Edit Descriptors 163

Table 15. Summary of Data Edit Descriptors 163

Table 16. Default Compatibility Between I/O List Data Types and Data Edit Descriptors 163

Table 17. RELAXED Compatibility Between Data Types and Data Edit Descriptors 164

Table 18. STRICT77 Compatibility Between Data Types and Data Edit Descriptors 164

Table 19. STRICT90 and STRICT95 Compatibility Between Data Types and Data Edit Descriptors 164

Table 20. Cray Fortran IEEE Intrinsic Module Extensions 169

Table 21. Obsolete Features and Preferred Alternatives 175

Table 22. Summary of String Edit Descriptors 193

16 S–3901–71

Contents

Page

Table 23. Obsolete Procedures and Alternatives 193

Table 24. Assign Object Open Processing 214

Table 25. Fortran Access Methods and Options 222

Table 26. Default Buffer Sizes for Fortran I/O Library Routines 228

Table 27. FFIO Layers . 236

Table 28. Data Manipulation: bufa Layer 250

Table 29. Supported Operations: bufa Layer 250

Table 30. Data Manipulation: cache Layer 251

Table 31. Supported Operations: cache Layer 251

Table 32. Data Manipulation: cachea Layer 252

Table 33. Supported Operations: cachea Layer 253

Table 34. Data Manipulation: cos Layer 254

Table 35. Supported Operations: cos Layer 254

Table 36. Data Manipulation: f77 Layer 256

Table 37. Supported Operations: f77 Layer 256

Table 38. Data Manipulation: global Layer 258

Table 39. Supported Operations: global Layer 258

Table 40. Values for Maximum Record Size on ibm Layer 260

Table 41. Values for Maximum Block Size in ibm Layer 260

Table 42. Data Manipulation: ibm Layer 260

Table 43. Supported Operations: ibm Layer 261

Table 44. Data Manipulation: mr Layer 263

Table 45. Supported Operations: mr Layer 263

Table 46. Data Manipulation: syscall Layer 264

Table 47. Supported Operations: syscall Layer 265

Table 48. Data Manipulation: text Layer 266

Table 49. Supported Operations: text Layer 266

Table 50. Values for Record Size: vms Layer 267

Table 51. Values for Maximum Block Size: vms Layer 268

Table 52. Data Manipulation: vms Layer 268

Table 53. Supported Operations: vms Layer 269

Table 54. C Program Entry Points . 272

Figures
Figure 1. Optimization Values . 42

Figure 2. Memory Use . 207

Figure 3. Access Methods and Default Buffer Sizes 231

Figure 4. Typical Data Flow . 233

S–3901–71 17

Introduction [1]

This manual describes the Cray Fortran compiler for the Cray Compiling
Environment (CCE) 7.1 Release. This compiler supports Cray XT systems using the
Cray Linux Environment (CLE) operating system.

The Cray Fortran compiler supports ISO/IEC 1539-1:2004, the Fortran 2003
standard adopted by the International Organization for Standardization (ISO). This
compiler also supports selected features from the Fortran 2008 standard. The Fortran
2008 standard has not been formally adopted at this time. Fortran 2008 feature
implementations are based on the specifications in the Committee Draft (ISO/IEC
SC22/WG5/N1776), and are subject to modification in the final standard.

The Cray Fortran compiler is also documented in man pages, beginning with the
crayftn(1) man page. Where the information in this manual differs from the man
page, the information in the man page supersedes this manual.

1.1 The Cray Fortran Programming Environment
The Cray Fortran Programming Environment consists of the tools and libraries used
to develop Fortran applications. These are:

• The ftn command, which invokes the Cray Fortran compiler. The ftn
command is properly termed a compiler driver, as it is used both to compile
source code into object code and to link object code files and libraries to create
executable files. This compiling and linking can be performed either as separate
processes or as one contiguous process, which has significant implications for file
handling considerations. These implications are described later in this section.
See the crayftn(1) man page for more information

• CrayLibs libraries, which provides library routines, intrinsic procedures, I/O
routines, and data conversion routines.

• The ftnlx command, which generates listings and checks for possible errors in
Fortran programs. See the ftnlx(1) man page for more information.

S–3901–71 19

Cray Fortran Reference Manual

In addition, Fortran program development is supported by the following
asynchronous products.

• LibSci libraries, which provide scientific library routines.

• MPT, the Cray Message Passing Toolkit, which supports MPI and SHMEM.

• CrayPat, the optional Cray Performance Analysis toolkit.

• A variety of optional debuggers, available from Cray and other vendors.

The Cray Fortran compiler uses and creates several types of files during processing.

• Source files in fixed source form (.f or .F files).

• Source files in free source form (.ftn, .FTN, .f90, .F90, .f95, .F95,
.f03, .F03, .f08, or .F08, files).

• Files containing output from the source preprocessor (.i files).

• Relocatable object code (.o files). During compilation, these relocatable object
files are saved in the current directory automatically.

• If specified, library files containing external references (.a files).

• If specified, assembly language output (.s files). Files with .s extensions are
assembled and written to the corresponding .o file.

• During linking, object files are linked to form an executable file, which by default
is named a.out.

You can use ftn command line options to modify the default file handling
behavior. For example, use the ftn -o option to specify an executable name other
than a.out. Alternatively, if you use CrayPat to conduct performance analysis
experiments, you must keep the object files created during compilation in order
to preserve source-to-executable function mapping. To do so, use the ftn -h
keepfiles option.

For more information about command line options, see Chapter 2, Invoking the Cray
Fortran Compiler on page 23.

1.2 Cray Fortran Compiler Messages
The Cray Fortran compiler can produce many messages during compilation and
linking. To expand on these messages, use the explain command. For more
information, see the explain(1) man page.

20 S–3901–71

Introduction [1]

1.3 Document-specific Conventions
The following conventions are specific to this document:

Convention Meaning

Rnnn The Rnnn notation indicates that the feature is in the Fortran standard
and can be located in the standard via the Rnnn syntax rule number.

Cray pointer

The term Cray pointer refers to the Cray pointer data type extension.

1.4 Fortran Standard Compatibility
In the Fortran standard, the term processor means the combination of a Fortran
compiler and the computing system that executes the code. A processor conforms
to the standard if it compiles and executes programs that conform to the standard,
provided that the Fortran program is not too large or complex for the computer system
in question.

You can direct the compiler to flag and generate messages when nonstandard usage of
Fortran is encountered. For more information about this command line option (ftn
-en), see -d disable and -e enable on page 25 or the ftn(1) man page. When the
option is in effect, the compiler prints messages for extensions to the standard that
are used in the program. As required by the standard, the compiler also flags the
following items and provides the reason that the item is being flagged:

• Obsolescent features

• Deleted features

• Kind type parameters not supported

• Violations of any syntax rules and the accompanying constraints

• Characters not permitted by the processor

• Illegal source form

• Violations of the scope rules for names, labels, operators, and assignment symbols

The Cray Fortran compiler includes extensions to the Fortran standard. Because
the compiler processes programs according to the standard, it is considered to be
a standard-conforming processor. When the option to note deviations from the
Fortran standard is in effect (-en), extensions to the standard are flagged with ANSI
messages when detected at compile time.

1.4.1 Fortran 95 Compatibility

No known issues.

S–3901–71 21

Cray Fortran Reference Manual

1.4.2 Fortran 90 Compatibility

No known issues.

1.5 Related Fortran Publications
For more information about the Fortran language and its history, consult the following
commercially available reference books.

• Fortran 2003 Standard can be downloaded from http://www.nag.co.uk/sc22wg5/.
The standard is also available directly from the ISO.

• Chapman, S. Fortran 95/2003 for Scientists & Engineers. McGraw Hill, 2007.
ISBN 0073191574.

• Metcalf, M., J. Reid, and M. Cohen. Fortran 95/2003 Explained. Oxford
University Press, 2004. ISBN 0-19-852693-8.

• Jeanne C. Adams, Walter S. Brainerd, Richard A. Hendrickson, Richard E.
Maine, Jeanne T. Martin, and Brian T. Smith, The Fortran 2003 Handbook:
The Complete Syntax, Features, and Procedures. Springer, 2009. ISBN
978-1-84628-378-9.

22 S–3901–71

http://www.nag.co.uk/sc22wg5

Invoking the Cray Fortran Compiler [2]

The following files are produced by or accepted by the Cray Fortran compiler:

File Type

a.out Default name of the executable output file. See the -o out_file
option for information about specifying a different name for the
executable file.

file.a Library files to be searched for external references or modules.

file.cg and file.opt

Files containing decompilation of the intermediate representation of
the compiler. These listings resemble the format of the source code.
These files are generated when the -rd option is specified.

file.f or file.F

Input Fortran source file in fixed source form. If file ends in .F, the
source preprocessor is invoked. By default, macros are not expanded
in Fortran source statements. The -F option (see -F on page 32) is
required to enable expansion of macros in Fortran source statements.

file.f90, file.F90, file.f95, file.F95, file.f03, file.F03, file.f08, file.F08,
file.ftn, file.FTN

Input Fortran source file in free source form. If file ends in .F90,
.F95, .F03, .F08, or .FTN, the source preprocessor is invoked.
By default, macros are not expanded in Fortran source statements.
Use the -F option to enable macro expansion in Fortran source
statements.

Note: The file suffix does not restrict the source file to a given
standard. Regardless of the file suffix, the Cray Fortran compiler
processes the file according to the full current Fortran standard.
For example, a source file with the suffix .f90 may contain code
using language features not implemented until the Fortran 2003
standard.

file.i File containing output from the source preprocessor.

file.lst Listing file.

S–3901–71 23

Cray Fortran Reference Manual

file.o Relocatable object file.

file.s Assembly language file.

modulename.mod

If the -em option is specified, the compiler writes a
modulename.mod file for each module; modulename is created by
taking the name of the module and, if necessary, converting it to
uppercase. This file contains module information, including any
contained module procedures.

The syntax of the ftn command is as follows:

ftn [-A module_name[, module_name] ...] [-b bin_obj_file]
[-c] [-d disable] [-D identifier[= value]]
[-e enable] [-f source_form]
[-F] [-g] [-G debug_lvl] [-h arg], [-I incldir]
[-J dir_name] [-l lib_file] [-L ldir] [-m msg_lvl]
[-M msgs] [-N col] [-o out_file] [-O opt[,opt] . . .]
[-p module_site] [-Q path] [-r list_opt] [-R runchk]
[-s size] [-S asm_file] [-T] [-U identifier[, identifier] ...]
[-v] [-V] [-Wphase,"opt..."]
[-x dirlist] [-X npes] [-Yphase,dirname] [--] sourcefile [sourcefile ...]

Note: Some default values shown for ftn command options may have been
changed by your site. See your system support staff for details.

2.1 -A module_name [, module_name] ...
The -A module_name [, module_name] ... option directs the compiler to behave
as if you entered a USE module_name statement for each module_name in your
Fortran source code. The USE statements are entered in every program unit and
interface body in the source file being compiled.

2.2 -b bin_obj_file
The -b bin_obj_file option disables the load step and saves the binary object file
version of your program in bin_obj_file.

Only one input file is allowed when the -b bin_obj_file option is specified. If you
have more than one input file, use the -c option to disable the load step and save the
binary files to their default file names. If only one input file is processed and neither
the -b nor the -c option is specified, the binary version of your program is not saved
after the load is completed.

If both the -b bin_obj_file and -c options are specified on the ftn command line,
the load step is disabled and the binary object file is written to the name specified as
the argument to the -b bin_obj_file option. For more information about the -c
option, see -c on page 25.

24 S–3901–71

Invoking the Cray Fortran Compiler [2]

By default, the binary file is saved in file.o, where file is the name of the source
file and .o is the suffix used.

2.3 -c

The -c option disables the load step and saves the binary object file version of your
program in file.o, where file is the name of the source file and .o is the suffix used.
If there is more than one input file, a file.o is created for each input file specified. By
default, this option is off.

If only one input file is processed and neither the -b bin_obj_file nor the -c
options are specified, the binary version of your program is not saved after the load
is completed.

If both the -b bin_obj_file and -c options are specified on the ftn command line,
the load step is disabled and the binary object file is written to the name specified
as the argument to the -b bin_obj_file option. For more information about the
-b bin_obj_file option, see -b bin_obj_file on page 24.

If both the -o out_file and the -c option are specified on the ftn command line,
the load step is disabled and the binary file is written to the out_file specified as an
argument to -o. For more information about the -o out_file option, see -o out_file
on page 58.

2.4 -d disable and -e enable
The -d disable and -e enable options disable or enable compiling options. To
specify more than one compiling option, enter the options without separators between
them; for example, -eaf. Table 1 shows the arguments to use for disable or enable.

Table 1. Compiling Options

args Action, if enabled

0 (Deferred implementation) Initializes all undefined local numeric
stack variables to 0. If a user variable is of type character, it is
initialized to NUL. If a user variable is type logical, it is initialized
to false. The variables are initialized upon each execution of each
procedure. Enabling this option can help identify problems caused by
using uninitialized numeric and logical variables.

Default: disabled

a Aborts compilation after encountering the first error.

Default: disabled

S–3901–71 25

Cray Fortran Reference Manual

args Action, if enabled

B Generates binary output. If disabled, inhibits all optimization and
allows only syntactic and semantic checking.

Default: enabled

c Interface checking: use Cray's system modules to check library calls
in a compilation. If you have a procedure with the same name as
one in the library, you will get errors as the compiler does not skip
user-specified procedures when performing the checks.

Default: disabled

C Enable/disable some types of standard call site checking. The current
Fortran standard requires that the number and types of arguments
must agree between the caller and callee. These constraints are
enforced in cases where the compiler can detect them, however,
specifying -dC disables some of this error-checking, which may be
necessary in order to get some older Fortran codes to compile.

Note: If error-checking is disabled, unexpected compile-time or
runtime results may occur.

In addition, the compiler by default attempts to detect situations in
which an interface block should be specified but is not. Specifying
-dC disables this type of checking as well.

Default: enabled

d Controls a column-oriented debugging feature when using fixed
source form. When the option is enabled, the compiler replaces the
D or d characters appearing in column 1 of your source with a blank
and treats the entire line as a valid source line. This feature can be
useful, for example, during debugging if you want to insert PRINT
statements.

When disabled, a D or d character in column 1 is treated as a
comment character.

Default: disabled

D Turns on all debugging information. This option is equivalent to
specifying these options: -O0, -g, -m2, -R bcdspi, and -rl.
See also -ed.

Default: disabled

26 S–3901–71

Invoking the Cray Fortran Compiler [2]

args Action, if enabled

E The -eE option allows existing declarations to duplicate the
declarations contained in a used module. Therefore, you do not have
to modify the older code by removing the existing declarations.
Because the declarations are not removed, the use associated objects
will duplicate declarations already in the code, which is not standard
conforming. However, this option allows the compiler to accept these
statements as long as the declarations match the declarations in the
module.

Existing declarations of a procedure must match the interface
definitions in the module; otherwise an error is generated. Only
existing declarations that declare the function name or generic name
in an EXTERNAL or type statement are allowable under this option.

This example illustrates some of the acceptable types of existing
declarations. Program older contains the older code, while module
m contains the interfaces to check.
module m

interface

subroutine one(r)

real :: r

end subroutine

function two()

integer :: two

end function

end interface

end module

program older

use m !Or use -Am on the compiler command line

external one !Use associated objects

integer :: two !in declarative statements

call one(r)

j = two()

end program

Default: disabled

S–3901–71 27

Cray Fortran Reference Manual

args Action, if enabled

g Allows branching into the code block for a DO or DO WHILE
construct. Historically, codes used branches out of and into DO
constructs. Fortran standards prohibit branching into a DO construct
from outside of that construct. By default, the Cray Fortran compiler
will issue an error for this situation. Cray does not recommend
branching into a DO construct, but if you specify -eg, the code will
compile.

Default: disabled

h Enables support for 8-bit and 16-bit INTEGER and LOGICAL types
that use explicit kind or star values.

By default (-eh), data objects declared as INTEGER(kind=1)
or LOGICAL(kind=1) are 8 bits long, and objects declared
as INTEGER(kind=2) or LOGICAL(kind=2) are 16 bits
long. When this option is disabled (-dh), data objects declared as
INTEGER(kind=1), INTEGER(kind=2), LOGICAL(kind=1),
or LOGICAL(kind=2) are 32 bits long.

Note: Vectorization of 8- and 16-bit objects is deferred.

Default: enabled

I Treats all variables as if an IMPLICIT NONE statement had been
specified. Does not override any IMPLICIT statements or explicit
type statements. All variables must be typed.

Default: disabled

j Executes DO loops at least once.

Default: disabled

m When this option is enabled, the compiler creates .mod files to
hold module information for future compiles. When it is disabled,
and a module is compiled, the compiler deletes any existing
MODULENAME.mod files it finds in the output directory before
creating new module information in the .o file.

By default, module files are written to the directory from which the
ftn command is executed. You can use the -J dir_name option to
specify an alternate output directory for .mod files only. For more
information about the -J dir_name option, see -J dir_name on
page 39.

Whether this option is enabled or disabled, the search order for
satisfying modules references in USE statements is as follows:

28 S–3901–71

Invoking the Cray Fortran Compiler [2]

args Action, if enabled

1. The current working directory.

2. Any directories or files specified with the -p option.

3. Any directories specified with the -I option.

4. Any directories or files specified with the FTN_MODULE_PATH
environment variable.

When searching within a directory, the compiler first checks all .mod
files, then the .o files, and then the .a files.

Note: The compiler creates modules through the MODULE
statement. A module is referenced with the USE statement. All
.mod files are named modulename.mod, where modulename is the
name of the module specified in the MODULE or USE statement.

Default: disabled

n Generates messages to note all nonstandard Fortran usage.

Default: disabled

o Display to stderr the optimization options used by the compiler
for this compilation.

Default: disabled

P Performs source preprocessing on Fortran source files, but does not
compile (see sourcefile[sourcefile.suffix ...] on page 74 for
valid file extensions). When specified, source code is included by
#include directives but not by Fortran INCLUDE lines. Generates
file.i, which contains the source code after the preprocessing has
been performed and the effects applied to the source program. By
default, macros are not expanded in Fortran source statements. Use
the -F option to enable macro expansion in Fortran source statements.
For more information about source preprocessing, see Chapter 5,
Source Preprocessing on page 125.

Default: disabled

q Aborts compilation if 100 or more errors are generated.

Default: enabled

S–3901–71 29

Cray Fortran Reference Manual

args Action, if enabled

Q Controls whether or not the compiler accepts variable names that
begin with a leading underscore (_) character. For example, when Q
is enabled, the compiler accepts _ANT as a variable name. Enabling
this option can cause collisions with system name space (for example,
library entry point names).

Default: disabled

R Compiles all functions and subroutines as if they had been defined
with the RECURSIVE attribute.

Default: disabled

s Scale the values of all KIND=4 count and count_rate arguments for
the SYSTEM_CLOCK intrinsic function. Since the value of a 32-bit
count argument can quickly wrap around to zero, the value of count
is scaled down by a factor of 2048. KIND=4 count_rate is scaled
in the same way. The Fortran Standard allows using different kind
arguments to count and count_rate, so this scaling can be disabled.
Care should be taken to make sure count and count_rate are the same
kind if this scaling is enabled.

Default: enabled

S Generates assembly language output and saves it in file.s. When
the -eS option is specified on the command line with the -S
asm_file option, the -S asm_file option overrides the -eS option.

Default: disabled

v Allocates variables to static storage. These variables are treated
as if they had appeared in a SAVE statement. The following
types of variables are not allocated to static storage: automatic
variables (explicitly or implicitly stated), variables declared with
the AUTOMATIC attribute, variables allocated in an ALLOCATE
statement, and local variables in explicit recursive procedures.
Variables with the ALLOCATABLE attribute remain allocated upon
procedure exit, unless explicitly deallocated, but they are not allocated
in static memory. Variables in explicit recursive procedures consist
of those in functions, in subroutines, and in internal procedures
within functions and subroutines that have been defined with the
RECURSIVE attribute. The STACK compiler directive overrides -ev;
for more information about this compiler directive, see Request Stack
Storage: STACK on page 115.

Default: disabled

30 S–3901–71

Invoking the Cray Fortran Compiler [2]

args Action, if enabled

w Enables support for automatic memory allocation for allocatable
variables and arrays that are on the left hand side of intrinsic
assignment statements.

The option can potentially decrease runtime performance, even
when automatic memory allocation is not needed. It will affect
optimizations for a code region containing an assignment to
allocatable variables or arrays. For example, it could easily prevent
loop fusion for multiple array syntax assignment statements with the
same shape.

Default: disabled

y (Deferred implementation) Adds information into the binary files
that allows the compiler driver to find the modules when used in
subsequent compiles. The -dy option disables this information.

Enabling this option is useful if the binary files for the Fortran
modules are not moved prior to the load step. The compiler driver
can then find these binaries without the user adding them to the load
line. If the module binary files will be moved before the load step,
this option should be disabled and the module binary files must be
explicitly specified on the load line. Often this is the case when
module binaries are added to a library archive file.

Default: disabled

Z Performs source preprocessing and compilation on Fortran source
files (see sourcefile[sourcefile.suffix ...] on page 74 for valid file
extensions). When specified, source code is included by #include
directives and by Fortran INCLUDE lines. Generates file.i, which
contains the source code after the preprocessing has been performed
and the effects applied to the source program. By default, macros
are not expanded in Fortran source statements. Use the -F option
to enable macro expansion in Fortran source statements. For more
information about source preprocessing, see Chapter 5, Source
Preprocessing on page 125.

Default: disabled

S–3901–71 31

Cray Fortran Reference Manual

2.5 -D identifier [=value]
The -D identifier[=value] option defines variables used for source preprocessing as
if they had been defined by a #define source preprocessing directive. If a value is
specified, there can be no spaces on either side of the equal sign (=). If no value is
specified, the default value of 1 is used.

The -U option undefines variables used for source preprocessing. If both -D and -U
are used for the same identifier, in any order, the identifier is undefined. For more
information about the -U option, see -U identifier [,identifier] ... on page 70.

This option is ignored unless one of the following conditions is true:

• The Fortran input source file is specified as either file.F, file.F90, file.F95,
file.F03, file.F08, or file.FTN.

• The -eP or -eZ options have been specified.

By default, macros are not expanded in Fortran source statements. Use the -F option
to enable macro expansion in Fortran source statements.

For more information about source preprocessing, see Chapter 5, Source
Preprocessing on page 125.

2.6 -f source_form
The -f source_form option specifies whether the Fortran source file is written in
fixed source form or free source form. For source_form, enter free or fixed.
The source_form specified here overrides any source form implied by the source file
suffix. A FIXED or FREE directive specified in the source code overrides this option
(see Specify Source Form: FREE and FIXED on page 113).

The default source form is fixed for input files that have the .f or .F suffix. The
default source form is free for input files that have the .f90, .F90, .f95, .F95,
.f03, .F03, .f08, .F08, .ftn, or .FTN suffix. Note that the Fortran standard
has declared fixed source form to be obsolescent.

If the file has a .F, .F90, .F95, .F03, .F08, or .FTN suffix, the source
preprocessor is invoked. See Chapter 5, Source Preprocessing on page 125 about
preprocessing.

2.7 -F

The -F option enables macro expansion throughout the source file. Typically, macro
expansion occurs only on source preprocessing directive lines. By default, this option
is off.

32 S–3901–71

Invoking the Cray Fortran Compiler [2]

This option is ignored unless one of the following conditions is true:

• The Fortran input source file is specified as either file.F, file.F90, file.F95,
file.F03, file.F08, or file.FTN.

• The -eP or -eZ option was specified.

For more information about source preprocessing, see Chapter 5, Source
Preprocessing on page 125.

2.8 -g

The -g option provides debugging support identical to specifying the -G0 option.

Default: off

2.9 -G debug_lvl
The -G debug_lvl option controls the tradeoffs between ease of debugging and
compiler optimizations. The compiler produces some level of internal debugger
information (DWARF) at all times. This DWARF data provides function and source
line information to debuggers for tracebacks and breakpoints, as well as type and
location information about data variables.

Note: The -g or -G options can be specified on a per-file basis, so that only part
of an application pays the price for improved debugging.

debug_lvl Support

0 Optimizations disabled: full DWARF information is available
for debugging, but at the cost of a slower and larger executable.
Breakpoints can be set at each line. This level of debugging is
supported when optimization is disabled; that is, when -O0, -O
ipa0, -O scalar0, -O thread0, and -O vector0 are in
effect.

1 Partial optimization: most DWARF and at least some optimizations
make tracebacks and limited breakpoints available in the debugger.
Some scalar optimizations and all loop nest restructuring is disabled,
but the source code will be visible and most symbols will be
available. This allows block-by-block debugging, with the exception
of innermost loops. The executable will be faster than with -g or
-G0.

S–3901–71 33

Cray Fortran Reference Manual

2 Full optimization: with partial DWARF and most optimizations,
tracebacks and very limited breakpoints are available in the debugger.
The source code will be visible and some symbols will be available.
This level allows post-mortem debugging, but local information
such as the value of a loop index variable is not necessarily reliable
at this level because such information often is carried in registers
in optimized code. The executable will be faster and smaller than
with -G1.

2.10 -h arg
The -h arg allows you to access various compiler functionality. For more
information about what to specify for arg, see the following subsections.

2.10.1 -h [no]autothread

The -h [no]autothread option enables or disables autothreading.

Default: -h noautothread

2.10.2 -h cachen

The -h cachen option specifies the level of automatic cache management to be
performed, where n is a value from 0 to 3 with 0 being no cache management and 3
being the most aggressive cache management. This is identical to the -O cachen
option and is provided for command-line compatibility with the Cray C compiler. For
more information, see -O cachen on page 44.

Default: -h cache2

2.10.3 -h [no]caf

The -h caf option enables the compiler to recognize coarray syntax. Coarrays are a
Fortran 2008 feature that offer a method for performing data passing. Coarrays are
discussed in more detail in Coarrays on page 170.

Data passing is an effective method for programming single-program-multiple-data
(SPMD) parallelism. Its chief advantages over MPI are lower latency and high
bandwidth for data transfers, both of which lead to improved scalability for parallel
applications. Compared to MPI and SHMEM, programs using coarrays are also more
human-readable, and thus increase programmer productivity. As a language feature,
the code can be conditionally analyzed and optimized by the compiler.

Coarray recognition is off (-h nocaf) by default.

34 S–3901–71

Invoking the Cray Fortran Compiler [2]

2.10.4 -h cpu=target_system

The -h cpu=target_system option specifies the Cray system on which the absolute
binary file is to be executed, where target_system can be either x86-64, opteron,
barcelona, shanghai, or istanbul.

The x86-64 and opteron options produce identical output, for use on single- and
dual-core systems. If you are creating executables for use on a system with quad-core
processors (either AMD Opteron barcelona or shanghai processors), you must
also have the associated module (either xtpe-barcelona or xtpe-shanghai)
loaded when compiling and linking your code. Likewise, if you are creating
executables for use on a system with AMD Opteron six-core processors (code named
istanbul), you must have the xtpe-istanbul module loaded when compiling
and linking your code. If one of these modules is loaded, the default target_system
changes to the corresponding cpu target.

If the target_system is set to barcelona, shanghai, or istanbul during
compilation of any source file, it must also be set to that same target during linking
and loading.

The target system may also be specified using the CRAY_PE_TARGET environment
variable. For more information, see CRAY_PE_TARGET Environment Variable on
page 76.

Default: x86-64

2.10.5 -h display_opt

The -h display_opt option displays the compiler optimization settings currently
in force. This option is identical to the -eo option and is provided for command-line
compatibility with the Cray C compiler.

2.10.6 -h [no]dwarf

The -h [no]dwarf option controls whether DWARF debugging information is
generated during compilation.

Default: dwarf

S–3901–71 35

Cray Fortran Reference Manual

2.10.7 -h func_trace

The -h func_trace option is for use only with CrayPat (Cray performance
analysis tool). If this option is specified, the compiler inserts CrayPat entry points
into each function in the compiled source file. The names of the entry points are:

__pat_tp_func_entry
__pat_tp_func_return

These are resolved by CrayPat when the program is instrumented using the
pat_build command. When the instrumented program is executed and it
encounters either of these entry points, CrayPat captures the address of the current
function and its return address.

2.10.8 -h keepfiles

The -h keepfiles option prevents the removal of the object (.o) and temporary
assembly (.s) files after an executable is created. Normally, the compiler
automatically removes these files after linking them to create an executable. Since the
original object files are required in order to instrument a program for performance
analysis, if you plan to use CrayPat to conduct performance analysis experiments, you
can use this option to preserve the object files.

2.10.9 -h [no]msgs

The -h [no]msgs option causes the compiler to write optimization messages to
stderr. This option is identical to the -O [no]msgs option and is provided for
command-line compatibility with the Cray C compiler. For more information, see -O
[no]msgs on page 51.

Default: -h nomsgs

2.10.10 -h [no]negmsgs

The -h [no]negmsgs option causes the compiler to generate messages
to stderr explaining why optimizations did not occur in a given instance.
This option is identical to the -O [no]negmsgs option and is provided for
command-line compatibility with the Cray C compiler. For more information, see
-O [no]negmsgs on page 52.

Default: -h nonegmsgs

36 S–3901–71

Invoking the Cray Fortran Compiler [2]

2.10.11 -h network=nic

The -h network=nic option is used to specify the target machine's interconnection
attributes. The only value currently supported is seastar.

Default: seastar

2.10.12 -h [no]omp

The -h [no]omp option enables or disables compiler recognition of OpenMP
directives. Using the -h noomp option is similar to the -h thread0 option, in
that it disables OpenMP, but unlike -h thread0 it does not affect autothreading.
The -h [no]omp option is identical to the -O [no]omp option and is provided
for command-line compatibility with the Cray C compiler. For more information,
see -O [no]omp on page 52.

Default: -h omp

2.10.13 -h [no]omp_trace

The -h [no]omp_trace turns the insertion of CrayPat OpenMP tracing calls on
or off. By default tracing is off.

Default: -h noomp_trace

2.10.14 -h page_align_allocate

The -h page_align_allocate option directs the compiler to force allocations
of arrays larger than the memory page size to be aligned on a page boundary. This
option affects only the ALLOCATE statements of the current source file; therefore
it must be specified for each source file where this behavior is desired. Using this
option can improve DIRECTIO performance.

2.10.15 -h profile_generate

The -h profile_generate option lets you request that the source code be
instrumented for profile information gathering with CrayPat (Cray performance
analysis tool). The compiler inserts calls and data gathering instructions that enable
CrayPat to gather information about the loops in a compilation unit. In order to get
useful data out of this feature, the CrayPat pat_build command must then be run
on the resulting executable in order to link in the CrayPat data gathering routines. If
this is not done, the code will still execute, however, no data is recorded. For more
information, see the intro_craypat(1) man page.

S–3901–71 37

Cray Fortran Reference Manual

2.10.16 -h [no]second_underscore

The -h [no]second_underscore option controls the way in which external
names are generated. By default, the compiler generates external names in lower
case and will add one trailing underscore (_). This behavior matches the PGI
Fortran compiler's external behavior. If -h second_underscore is specified,
the compiler adds a second trailing underscore if the original external name has
any underscores in it. This behavior matches the GNU compiler's external naming
behavior.

Default: -h nosecond_underscore

2.10.17 -h threadn

The -h threadn option enables you to control the compilation and optimization of
OpenMP and autothreading directives, where n is a value from 0 to 3 with 0 being
off and 3 specifying the most aggressive optimization. This option is identical to the
-O threadn option and is provided for command-line compatibility with the Cray
C compiler. For more information, see -O threadn on page 56.

Default: -h thread2

2.11 -I incldir
The -I incldir option specifies a directory to be searched for files named in
INCLUDE lines in the Fortran source file and for files named in #include source
preprocessing directives. Additionally, all user-specified -I incldir directories are
searched for MODULE USE resolution after all user-specified -p paths are searched.

You must specify an -I option for each directory you want searched. Directories can
be specified in incldir as full path names or as path names relative to the working
directory. By default, only the directory of the file referencing the included file and
system directories are searched. None of the system-specified -I incldir directories
are searched during MODULE USE resolution.

The following example causes the compiler to search for files included within
earth.f in the directories /usr/local/sun and ../moon:

% ftn -I /usr/local/sun -I ../moon earth.f

If the INCLUDE line or #include directive in the source file specifies an absolute
name (that is, one that begins with a slash (/)), that name is used, and no other
directory is searched. If a relative name is used (that is, one that does not begin with
a slash (/)), the compiler searches for the file in the directory of the source file
containing the INCLUDE line or #include directive. If this directory contains no
file of that name, the compiler then searches the directories named by the -I options,
as specified on the command line, from left to right.

38 S–3901–71

Invoking the Cray Fortran Compiler [2]

2.12 -J dir_name
The -J dir_name option specifies the directory to which file.mod files are written
when the -e m option is specified on the command line. By default, the module files
are written to the directory from which the ftn command was entered.

The compiler will automatically search the dir_name directory for modules to satisfy
USE statements. An error is issued if the -em option is not specified when the -J
dir_name is used.

2.13 -l libname
The -l libname option directs the compiler driver to search for the specified object
library file when loading an executable file. To request more than one library file,
specify multiple -l options.

The compiler driver searches for libraries by prepending ldir/lib on the front of
libname and appending .a on the end of it, for each ldir that has been specified by
using the -L option. It uses the first file it finds. See also the -L option.

For more information about library search rules, see -L ldir on page 39.

2.14 -L ldir
The -L ldir option directs the compiler driver to look for library files in directory
ldir. To request more than one library directory, specify multiple -L options.

The compiler driver searches for library files in directory ldir before searching the
default directories: /opt/ctl/libs and /lib.

For example, if -L ../mylib, -L /loclib, and -l m are specified, the
compiler driver searches for the following files and uses the first one found:

../mylibs/libm.a
/loclib/libm.a
/opt/ctl/libs/libm.a
/lib/libm.a

For information about specifying module locations, see -p
module_site[,module_site] on page 58.

2.15 -m msg_lvl
The -m msg_lvl option specifies the minimum compiler message levels to enable.
The following list shows the integers to specify in order to enable each type of
message and which messages are generated by default.

S–3901–71 39

Cray Fortran Reference Manual

msg_lvl Message types enabled

0 Error, warning, caution, note, and comment

1 Error, warning, caution, and note

2 Error, warning, and caution

3 Error and warning (default)

4 Error

Caution and warning messages denote, respectively, possible and probable user
errors.

By default, messages are sent to the standard error file, stderr, and are displayed
on your terminal. If the -r option is specified, messages are also sent to the listing
file.

To see more detailed explanations of messages, use the explain command. This
command retrieves message explanations and displays them online. For example, to
obtain documentation on message 500, enter the following command:

% explain ftn-500

The default msg_lvl is 3, which suppresses messages at the comment, note, and
caution level. It is not possible to suppress messages at the error level. To suppress
specific comment, note, caution, and warning messages, see -M msgs on page 40.

To obtain messages regarding nonstandard Fortran usage, specify -e n. For more
information about this option, see -d disable and -e enable on page 25.

2.16 -M msgs
The -M msgs option suppresses specific messages at the warning, caution, note,
and comment levels and can change the default message severity to an error or a
warning level. You cannot suppress or alter the severity of error-level messages with
this option.

To suppress messages, specify one or more integer numbers that correspond to the
Cray Fortran compiler messages you want to suppress. To specify more than one
message number, specify a comma (but no spaces) between the message numbers.
For example, -M 110,300 suppresses messages 110 and 300.

To change a message's severity to an error level or a warning level, specify an E
(for error) or a W (for warning) and then the number of the message. For example,
consider the following option: -M 300,E600,W400. This specification results in
the following messages:

40 S–3901–71

Invoking the Cray Fortran Compiler [2]

• Message 300 is disabled and is not issued, provided that it is not an error-level
message by default. Error-level messages cannot be suppressed and cannot have
their severity downgraded.

• Message 600 is issued as an error-level message, regardless of its default severity.

• Message 400 is issued as a warning-level message, provided that it is not an
error-level message by default.

2.17 -N col
The -N col option specifies the line width for fixed- and free-format source lines.
The value used for col specifies the maximum number of columns per line.

For free form sources, col can be set to 132 or 255.

For fixed form sources, col can be set to 72, 80, 132, or 255.

Characters in columns beyond the col specification are ignored.

By default, lines are 72 characters wide for fixed-format sources and 132 characters
wide for free-form sources.

2.18 -O opt [,opt] ...
The -O opt option specifies optimization features. You can specify more than one
-O option, with accompanying arguments, on the command line. If specifying more
than one argument to -O, separate the individual arguments with commas and do
not include intervening spaces.

Note: The -eo option or the ftnlx command displays all the optimization
options the compiler uses at compile time.

The -O 0, -O 1, -O 2, and -O 3 options allow you to specify a general level of
optimization that includes vectorization, scalar optimization, and inlining. Generally,
as the optimization level increases, compilation time increases and execution time
decreases.

The -O 1, -O 2, and -O 3 specifications do not directly correspond to the numeric
optimization levels for scalar optimization, vectorization, and inlining. For example,
specifying -O 3 does not necessarily enable vector3. Cray reserves the right to
alter the specific optimizations performed at these levels from release to release.

S–3901–71 41

Cray Fortran Reference Manual

The other optimization options, such as -O aggress and -O cachen, control
pattern matching, cache management, zero incrementing, and several other
optimization features. Some of these features can also be controlled through compiler
directives.

Figure 1 shows the relationships between some of the -O opt values.

Figure 1. Optimization Values

thr
ea

d0

thr
ea

d1

thr
ea

d2

thr
ea

d3

X

X X

X X

X
X X

X X X

X

X

Low compile cost

Moderate compile cost

Potentially high compile cost

No numerical differences from serial
execution (no vector/thread reductions)

Potential numerical differences from
serial execution (vector/thread
reductions)
Potential numerical differences from
unoptimized execution (operator
reassociation)

No optimizations that may create
exceptions

Implies at least scalar1

Implies at least scalar2

Loop nest restructuring

Vectorize array syntax statements

OpenMP disabled

X
sc

ala
r0

ve
cto

r0

sc
ala

r1

ve
cto

r1

sc
ala

r2

ve
cto

r2

sc
ala

r3

ve
cto

r3

X
X X X X

X X

X

X X X

X X X

X X X

X
X X
X X

X X X X

X

X X X X X
Optimizations that may create
exceptions X X X X

X X

X XX

X

X

42 S–3901–71

Invoking the Cray Fortran Compiler [2]

2.18.1 -O n

The -On option performs general optimization at these levels: 0 (none), 1
(conservative), 2 (moderate, default), and 3 (aggressive).

• The -O 0 option inhibits optimization including inlining. This option's
characteristics include low compile time, small compile size, and no global scalar
optimization.

Most array syntax statements are vectorized, but all other vectorizations are
disabled.

• The -O 1 option specifies conservative optimization. This option's
characteristics include moderate compile time and size, global scalar
optimizations, and loop nest restructuring. Results may differ from the results
obtained when -O 0 is specified because of operator reassociation. No
optimizations will be performed that might create false exceptions.

Only array syntax statements and inner loops are vectorized and the system does
not perform some vector reductions. User tasking is enabled, so !$OMP directives
are recognized.

• The -O 2 option specifies moderate optimization. This option's characteristics
include moderate compile time and size, global scalar optimizations, pattern
matching, and loop nest restructuring.

Results may differ from results obtained when -O 1 is specified because of
vector reductions. The -O 2 option enables automatic vectorization of array
syntax and entire loop nests.

This is the default level of optimization.

• The -O 3 option specifies aggressive optimization. This option's characteristics
include a potentially larger compile size, longer compile time, global scalar
optimizations, possible loop nest restructuring, and pattern matching. The
optimizations performed might create false exceptions in rare instances.

Results may differ from results obtained when -O 1 is specified because of
vector reductions.

2.18.2 -O [no]aggress

The -O aggress option causes the compiler to treat a program unit (for example, a
subroutine or a function) as a single optimization region. Doing so can improve the
optimization of large program units by raising the limits for internal tables, which
increases opportunities for optimization. This option increases compile time and size.

Default: -O noaggress

S–3901–71 43

Cray Fortran Reference Manual

2.18.3 -O cachen

The -O cachen option specifies the following levels of automatic cache
management.

• -O cache0 specifies no automatic cache management; all memory references
are allocated to cache. Both automatic cache blocking and manual cache blocking
(by use of the BLOCKABLE directive, as described in Permit Cache Blocking:
BLOCKABLE Directive on page 113) are shut off. Characteristics include low
compile time.

The -O cache0 option is compatible with all scalar and vector optimization
levels.

• -O cache1 specifies conservative automatic cache management.
Characteristics include moderate compile time. Data are placed in the cache when
the possibility of cache reuse exists and the predicted cache footprint of the datum
in isolation is small enough to experience the reuse.

• -O cache2 specifies moderately aggressive automatic cache management.
Characteristics include moderate compile time. Data are placed in the cache when
the possibility of cache reuse exists and the predicted state of the cache model is
such that the datum will experience the reuse.

• -O cache3 specifies aggressive automatic cache management. Characteristics
include potentially high compile time. Data are placed in the cache when the
possibility of cache reuse exists and the allocation of the datum to the cache is
predicted to increase the number of cache hits.

Default: -O cache2

2.18.4 -O fpn

The -O fp option allows you to control the level of floating-point optimizations.
The n argument controls the level of allowable optimization; 0 gives the compiler
minimum freedom to optimize floating-point operations, while 3 gives it maximum
freedom. The higher the level, the less the floating-point operations conform to the
IEEE standard.

This option is useful for code that uses unstable algorithms, but which is optimizable.
It is also useful for applications that want aggressive floating-point optimizations that
go beyond what the Fortran standard allows.

44 S–3901–71

Invoking the Cray Fortran Compiler [2]

Generally, this is the behavior and usage for each -O fp level:

• -O fp0 causes your program's executable code to conform more closely to
the IEEE floating-point standard than the default mode (-O fp2). When this
level is specified, many identity optimizations are disabled, executable code is
slower than higher floating-point optimization levels, floating point reductions are
disabled, and a scaled complex divide mechanism is enabled that increases the
range of complex values that can be handled without producing an underflow.

The-O fp0 option should only be used when your code pushes the limits of
IEEE accuracy or requires strong IEEE standard conformance.

• -O fp1 performs various, generally safe, IEEE non-conforming optimizations,
such as folding a == a to true, where a is a floating point object. At this
level, floating-point reassociation1 is greatly limited, which may affect the
performance of your code.

The -O fp1 options should only be used when your code pushes the limits of
IEEE accuracy, or requires substantial IEEE standard conformance.

• -O fp2 includes optimizations of -O fp1. This is the default.

• -O fp3 includes optimizations of -O fp1 and -O fp2.

The -O fp3 option should be used when performance is more critical than the
level of IEEE standard conformance provided by -O fp2.

Table 2 compares the various optimization levels of the -O fp option (levels 2 and
3 are usually the same). The table lists some of the optimizations performed; the
compiler may perform other optimizations not listed.

Table 2. Floating-point Optimization Levels

Optimization
Type fp0 fp1 fp2 (default) fp3

Complex
divisions

Accurate and slower Accurate and
slower

Less accurate (less
precision) and faster.

Less accurate (less
precision) and faster.

Exponentiation
rewrite

None None Maximum
performance2

Maximum
performance2, 3

Strength
reduction

Fast Fast Aggressive Aggressive

1 An example of reassociation is when a+b+c is rearranged to b+a+c, where a, b, and c are floating
point variables.

2 Rewriting values raised to a constant power into an algebraically equivalent series of multiplications
and/or square roots.

3 Rewriting exponentiations (ab) not previously optimized into the algebraically equivalent form exp(b
* ln(a)).

S–3901–71 45

Cray Fortran Reference Manual

Optimization
Type fp0 fp1 fp2 (default) fp3

Rewrite
division as
reciprocal
equivalent 4

None None Yes Aggressive

Floating point
reductions

Slow Fast Fast Fast

Safety Maximum Moderate Moderate Low

Expression
factoring

None Yes Yes Yes

Expression
tree balancing

None No Yes Yes

2.18.5 -O fusionn

The -O fusionn option globally controls loop fusion and changes the assertiveness
of the FUSION directive. Loop fusion can improve the performance of loops, though
in rare cases it may degrade performance.

The n argument allows you to turn loop fusion on or off and determine where fusion
should occur. It also affects the assertiveness of the FUSION directive. Use one of
these values for n:

0 No fusion (ignore all FUSION directives and do not attempt to fuse
other loops)

1 Attempt to fuse loops that are marked by the FUSION directive.

2 (default)

Attempt to fuse all loops (includes array syntax implied loops),
except those marked with the NOFUSION directive.

2.18.6 -O inlinelib

(Deferred implementation) The -O inlinelib option causes the compiler to
attempt inlining of those Cray scientific library routines that are available for inlining.
For a report of what was inlined or not, see the -O msgs,negmsgs option.

This option is off by default.

4 For example, x/y is transformed to x * 1.0/y.

46 S–3901–71

Invoking the Cray Fortran Compiler [2]

2.18.7 -O ipan and -O ipafrom=source[:source] ...

Inlining is the process of replacing a user procedure call with the procedure definition
itself. This saves subprogram call overhead and may allow better optimization of
the inlined code. If all calls within a loop are inlined, the loop becomes a candidate
for parallelization.

The -O ipan option specifies automatic inlining. Automatic inlining allows the
compiler to automatically select which functions to inline, depending on the inlining
level n. Each n specifies a different set of heuristics. When -O ipan is used alone,
the candidates for expansion are all those functions that are present in the input file to
the compile step. If -O ipan is used in conjunction with -O ipafrom=source, the
candidates for expansion are those functions present in source. For an explanation of
each lining level, see Table 3.

The compiler supports the following inlining modes through the indicated options:

• Automatic inlining allows the compiler to automatically select which procedures
to inline depending on the selected inlining level.

• Explicit inlining allows you to explicitly indicate which procedures the compiler
should attempt to inline.

• Combined inlining allows you to specify potential targets for inline expansion,
while applying the selected level of inlining heuristics.

Cloning is the duplication of a procedure with modifications to the procedure such
that it will run more efficiently. The original call site to that procedure is replaced
with a call to the duplicate copy.

For example, the compiler will clone a procedure when there are constants in the call
site to that procedure. The new clone will replace the associated dummy argument
with its constant actual argument.

Automatic cloning is enabled at -Oipa4 and higher.

The compiler first attempts to inline a call site. If inlining the call site fails, the
compiler attempts to clone the procedure for the specific call site.

S–3901–71 47

Cray Fortran Reference Manual

When a clone is made, dummy arguments are replaced with associated constant
values throughout the routine. The following example shows cloning in action:

PROGRAM TEST

CALL SAM(3, .TRUE.) ! Call site with constants

END

SUBROUTINE SAM(I, L)
INTEGER I
LOGICAL L

IF (L) THEN
PRINT *, I

ENDIF
END

Compiling the previous program with the -O ipa4 option produces the following
program:

PROGRAM TEST

CALL SAM@1(3, .TRUE.) ! This is a call to a clone of SAM.

END

! Original Subroutine
SUBROUTINE SAM(I, L)
INTEGER I
LOGICAL L

IF (L) THEN
PRINT *, I

ENDIF
END

! Cloned subroutine
SUBROUTINE SAM@1(I, L)
INTEGER I
LOGICAL L

IF (.TRUE.) THEN ! The optimizer will eliminate this IF test

PRINT *, 3
ENDIF
END

2.18.7.1 Automatic Inlining

The -O ipan option allows the compiler to automatically decide which procedures
to consider for inlining. Procedures that are potential targets for inline expansion
include all the procedures within the input file to the compilation. Table 3 explains
what is inlined at each level.

48 S–3901–71

Invoking the Cray Fortran Compiler [2]

Table 3. Automatic Inlining Specifications

Inlining level Description

0 All inlining is disabled. All inlining compiler directives are ignored.

1 Directive inlining. Inlining is attempted for call sites and routines that are under the
control of an inlining compiler directive. See Chapter 4, Using Cray Fortran Directives
on page 81 for more information about inlining directives.

2 Call nest inlining. Inline a call nest to an arbitrary depth as long as the nest does not
exceed some compiler-determined threshold. A call nest can be a leaf routine. The
expansion of the call nest must yield straight-line code (code containing no external
calls) for any expansion to occur.

3 Constant actual argument inlining. This includes levels 1 and 2, plus any call site that
contains a constant actual argument. This is the default inlining level.

4 Tiny routine inlining plus cloning. This includes levels 1, 2, and 3, plus the inlining of
very small routines regardless of where those routines fall in the call graph. The lower
limit threshold is an internal compiler parameter. Also, routine cloning is attempted if
inlining fails at a given call site.

5 Aggressive interprocedural analysis (IPA). Includes levels 1, 2, 3, and 4. Additionally,
Global Constant Propagation is performed. This is the replacement of variables that are
statically initialized and never modified anywhere in the user program. The variable is
replaced with the constant value in its initializer. This applies only to scalar variables.

For Global Constant Propagation to work, the entire executable program must be
presented to the compiler at once, which requires a large amount of memory and can
significantly increase compile time. If the entire executable is not presented at once,
the optimization fails, and messages are issued that indicate dead ends in the call
graph.

2.18.7.2 Explicit Inlining

The -O ipafrom=source[:source] option allows you to explicitly indicate the
procedures to consider for inline expansion. The source arguments identify each
file or directory that contains the routines to consider for inlining. Whenever a call
is encountered in the input program that matches a routine in source, inlining is
attempted for that call site.

Note: Blank spaces are not allowed on either side of the equal sign.

All inlining directives are recognized with explicit inlining. For information about
inlining directives, see Chapter 4, Using Cray Fortran Directives on page 81.

Note that the routines in source are not actually loaded with the final program. They
are simply templates for the inliner. To have a routine contained in source loaded with
the program, you must include it in an input file to the compilation.

Use one or more of the objects described in Table 4 in the source argument.

S–3901–71 49

Cray Fortran Reference Manual

Table 4. File Types

Fortran source
files

The routines in Fortran source files are candidates for inline
expansion and must contain error-free code. Source files that are
acceptable for inlining are files that have one of the following
extensions

• .f

• .F

• .f90

• .F90

• .f95

• .F95

• .f03

• .F03

• .f08

• .F08

• .ftn

• .FTN

Module files When compiling with -em and -Omodinline is in
effect, the precompiled module information is written to
modulename.mod. The compiler writes a modulename.mod
file for each module; modulename is created by taking the name
of the module and, if necessary, converting it to uppercase.

dir A directory that contains any of the file types described in this
table.

2.18.7.3 Combined Inlining

Combined inlining is invoked by specifying the -O ipan and -O ipafrom=
options on the command line. This inlining mode will look only in source for
potential targets for expansion, while applying the selected level of inlining heuristics
specified by the -O ipan option.

50 S–3901–71

Invoking the Cray Fortran Compiler [2]

2.18.8 -O [no]modinline

The -O modinline option prepares module procedures so they can be inlined
by directing the compiler to create templates for module procedures encountered in
a module. These templates are attached to file.o or modulename.mod. The files
that contain these inlinable templates can be saved and used later to inline call sites
within a program being compiled.

When -e m is in effect, module information is stored in modname.mod. The
compiler writes a modulename.mod file for each module; modulename is created by
taking the name of the module and, if necessary, converting it to uppercase.

The process of inlining module procedures requires only that file.o or
modulename.mod be available during compilation through the typical module
processing mechanism. The USE statement makes the templates available to the
inliner. You do not need to specify the file.o or modulename.mod with the -O
ipafrom option.

When -O modinline is specified, the MODINLINE and NOMODINLINE
directives are recognized. Using the -O modinline option increases the size of
file.o.

To ensure that file.o is not removed, specify this option in conjunction with the -c
option. For information about the -c option, see -c on page 25.

Default: -O modinline

2.18.9 -O [no]msgs

The -O msgs option causes the compiler to write optimization messages to
stderr.

Similar information in a more-readable format can be obtained by using the -rm
option instead. Specifying the -rm option enables -O msgs. For more information,
see -r list_opt on page 62.

Default: -O nomsgs

S–3901–71 51

Cray Fortran Reference Manual

2.18.10 -O [no]negmsgs

The -O negmsgs option causes the compiler to generate messages to stderr
that indicate why optimizations such as vectorization or inlining did not occur in a
given instance.

The -O negmsgs option enables the -O msgs option. The -rm option enables the
-O negmsgs option.

Default: -O nonegmsgs

2.18.11 -O nointerchange

The -O nointerchange option inhibits the compiler's attempts to interchange
loops. Interchanging loops by having the compiler replace an inner loop with an outer
loop can increase performance. The compiler performs this optimization by default.

Specifying the -O nointerchange option is equivalent to specifying a
NOINTERCHANGE directive prior to every loop. To disable loop interchange
on individual loops, use the NOINTERCHANGE directive. For more information
about the NOINTERCHANGE directive, see Control Loop Interchange:
[NO]INTERCHANGE on page 106.

2.18.12 -O [no]omp

The -O [no]omp option enables or disables compiler recognition of OpenMP
directives. Using the -O noomp option is similar to the -O thread0 option, in
that it disables OpenMP, but unlike -O thread0 it does not affect autothreading.
The -O [no]omp option is identical to the -h [no]omp option.

Default: -O omp

2.18.13 -O [no]overindex

The -O nooverindex option declares that there are no array subscripts which
index a dimension of an array that are outside the declared bounds of that dimension.
Short loop code generation occurs when the extent does not exceed the maximum
vector length of the machine.

Specifying -O overindex declares that the program contains code that makes
array references with subscripts that exceed the defined extents. This prevents the
compiler from performing the short loop optimizations described in the preceding
paragraph.

52 S–3901–71

Invoking the Cray Fortran Compiler [2]

Overindexing is nonstandard, but it compiles correctly as long as data dependencies
are not hidden from the compiler. This technique collapses loops; that is, it replaces a
loop nest with a single loop. An example of this practice is as follows:

DIMENSION A(20, 20)
DO I = 1, N

A(I, 1) = 0.0
END DO

Assuming that N equals 400 in the previous example, the compiler might generate
more efficient code than a doubly nested loop. However, incorrect results can occur in
this case if -O nooverindex is in effect.

You do not need to specify -O overindex if the overindexed array is a Cray
pointee, has been equivalenced, or if the extent of the overindexed dimension
is declared to be 1 or *. In addition, the -O overindex option is enabled
automatically for the following extension code, where the number of subscripts in an
array reference is less than the declared number:

DIMENSION A(20, 20)
DO I = 1, N

A(I) = 0.0 ! 1-dimension reference;
! 2-dimension array

END DO

Note: The -O overindex option is used by the compiler for detection of
short loops and subsequent code scheduling. This allows manual overindexing as
described in this section, but it may have a negative performance effect because of
fewer recognized short loops and more restrictive code scheduling. In addition, the
compiler continues to assume, by default, a standard-conforming user program
that does not overindex when doing dependency analysis for other loop nest
optimizations.

Default: -O nooverindex

2.18.14 -O [no]pattern

The -O pattern option enables pattern matching for library substitution. The
pattern matching feature searches your code for specific code patterns and replaces
them with calls to highly optimized routines.

The -O pattern option is enabled only for optimization levels -O 2,
-O vector2 or higher; there is no way to force pattern matching for lower levels.

Specifying -O nopattern disables pattern matching and causes the compiler
to ignore the PATTERN and NOPATTERN directives. For information about
the PATTERN and NOPATTERN directives, see Request Pattern Matching:
[NO]PATTERN on page 92.

Default: -O pattern

S–3901–71 53

Cray Fortran Reference Manual

2.18.15 -O scalarn

The -O scalarn option specifies these levels of scalar optimization:

• scalar0 disables scalar optimization. Characteristics include low compile time
and size.

The -O scalar0 option is compatible with -O vector0.

• scalar1 specifies conservative scalar optimization. Characteristics include
moderate compile time and size. Results can differ from the results obtained when
-O scalar0 is specified because of operator reassociation. No optimizations
are performed that could create false exceptions.

The -O scalar1 option is compatible with -O vector0 or -O vector1.

• scalar2 specifies moderate scalar optimization. Characteristics include
moderate compile time and size. Results can differ slightly from the results
obtained when -O scalar1 is specified because of possible changes in loop
nest restructuring. Generally, no optimizations are done that could create false
exceptions.

The -O scalar2 option is compatible with all vectorization levels.

This is the default scalar optimization level.

• scalar3 specifies aggressive scalar optimization. Characteristics include
potentially greater compile time and size. Results can differ from the results
obtained when -O scalar1 is specified because of possible changes in loop
nest restructuring.

The optimization techniques used can create false exceptions in rare instances.
Analysis that determines whether a variable is used before it is defined is enabled
at this level.

2.18.16 -O shortcircuitn

The -O shortcircuitn option specify various levels of short circuit evaluation.
Short circuit evaluation is an optimization in which the compiler analyzes all or
part of a logical expression based on the results of a preliminary analysis. When
short circuiting is enabled, the compiler attempts short circuit evaluation of logical
expressions that are used in IF statement scalar logical expressions. This evaluation
is performed on the .AND. operator and the .OR. operator.

Example 1: Assume the following logical expression:

operand1 .AND. operand2

The operand2 need not be evaluated if operand1 is false because in that case, the
entire expression evaluates to false. Likewise, if operand2 is false, operand1 need
not be evaluated.

54 S–3901–71

Invoking the Cray Fortran Compiler [2]

Example 2: Assume the following logical expression:

operand1 .OR. operand2

The operand2 need not be evaluated if operand1 is true because in that case, the
entire expression evaluates to true. Likewise, if operand2 is true, operand1 need
not be evaluated.

The compiler performs short circuit evaluation in a variety of ways, based on the
following command line options:

• -O shortcircuit0 disables short circuiting of IF and ELSEIF statement
logical conditions.

• -O shortcircuit1 specifies short circuiting of IF and ELSEIF logical
conditions only when a PRESENT, ALLOCATED, or ASSOCIATED intrinsic
procedure is in the condition.

The short circuiting is performed left to right. In other words, the left operand is
evaluated first, and if it determines the value of the operation, the right operand is
not evaluated. The following code segment shows how this option could be used:

SUBROUTINE SUB(A)
INTEGER,OPTIONAL::A
IF (PRESENT(A) .AND. A==0) THEN
...

The expression A==0 must not be evaluated if A is not PRESENT. The short
circuiting performed when -O shortcircuit1 is in effect causes the
evaluation of PRESENT(A) first. If that is false, A==0 is not evaluated. If
-O shortcircuit1 is in effect, the preceding example is equivalent to the
following example:

SUBROUTINE SUB(A)
INTEGER,OPTIONAL::A
IF (PRESENT(A)) THEN

IF (A==0) THEN
...

• -O shortcircuit2 specifies short circuiting of IF and ELSEIF logical
conditions, and it is done left to right. All .AND. and .OR. operators in these
expressions are evaluated in this way. The left operand is evaluated, and if it
determines the result of the operation, the right operand is not evaluated.

S–3901–71 55

Cray Fortran Reference Manual

• -O shortcircuit3 specifies short circuiting of IF and ELSEIF logical
conditions. It is an attempt to avoid making function calls. When this option is in
effect, the left and right operands to .AND. and .OR. operators are examined
to determine if one or the other contains function calls. If either operand has
functions, short circuit evaluation is performed. The operand that has fewer calls
is evaluated first, and if it determines the result of the operation, the remaining
operand is not evaluated. If both operands have no calls, then no short circuiting
is done. For the following example, the right operand of .OR. is evaluated first.
If A==0 then ifunc() is not called:

IF (ifunc() == 0 .OR. A==0) THEN
...

-O shortcircuit2 is the default.

2.18.17 -O threadn

The -O threadn option enables you to control the compilation and optimization of
OpenMP directives and automatic threading, where n is a value from 0 to 3 with 0
being off and 3 specifying the most aggressive optimization. This option is identical
to the -h threadn option.

The valid values for n are:

0 No autothreading or OpenMP threading. The -O thread0 option
is similar to -O noomp, but -O noomp disables OpenMP only and
does not affect autothreading.

1 Specifies strict compliance with the OpenMP standard for directive
compilation. Strict compliance is defined as no extra optimizations in
or around OpenMP constructs. In other words, the compiler performs
only the requested optimizations.

2 OpenMP parallel regions are subjected to some optimizations;
that is, some parallel region expansion. Parallel region expansion
is an optimization that merges two adjacent parallel regions in
a compilation unit into a single parallel region. Limited loop
restructuring is done on OpenMP partitioned loop. Legal scalar
optimizations are performed across OpenMP constructs.

3 Full optimization: loop restructuring, including modifying iteration
space for static schedules (breaking standard compliance). Reduction
results may not be repeatable.

Default: -O thread2

56 S–3901–71

Invoking the Cray Fortran Compiler [2]

2.18.18 -O unrolln

The -O unrolln option globally controls loop unrolling and changes the
assertiveness of the UNROLL directive. By default, the compiler attempts to unroll all
loops, unless the NOUNROLL directive is specified for a loop. Generally, unrolling
loops increases single processor performance at the cost of increased compile time
and code size.

The n argument allows you to turn loop unrolling on or off and determine where
unrolling should occur. It also affects the assertiveness of the UNROLL directive.
Use one of these values for n:

0 No unrolling (ignore all UNROLL directives and do not attempt to
unroll other loops)

1 Honor the UNROLL directive. Attempt to unroll loops if there is
proof that the loop will benefit.

2 (default)

Attempt to unroll all loops (includes array syntax implied loops),
except those marked with the NOUNROLL directive, if a performance
benefit is expected.

2.18.19 -O vectorn

The -O vectorn option specifies these levels of vectorization:

• -O vector0 specifies very conservative vectorization. Characteristics include
low compile time and small compile size.

The -O vector0 option is compatible with all scalar optimization levels.
Vector code is generated for most array syntax statements but not for user-coded
loops.

• -O vector1 specifies conservative vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured if scalar level >
0. Only inner loops are vectorized. No vectorizations that might create false
exceptions are performed.

The -O vector1 option is compatible with -O scalar1, -O scalar2,
or -O scalar3.

• -O vector2 specifies moderate vectorization. Characteristics include moderate
compile time and size. Loop nests are restructured.

The -O vector2 option is compatible with -O scalar2 or -O scalar3.

This is the default vectorization level.

S–3901–71 57

Cray Fortran Reference Manual

• -O vector3 specifies aggressive vectorization. Characteristics include
potentially high compile time and size. Loop nests are restructured.
Vectorizations that might create false exceptions in rare cases may be performed.

The -O vector3 option is compatible with -O scalar2 or -O scalar3.

2.18.20 -O [no]zeroinc

The -O zeroinc option causes the compiler to assume that a constant increment
variable (CIV) can be incremented by zero. A CIV is a variable that is incremented
only by a loop invariant value. For example, in a loop with variable J, the statement
J = J + K, where K can be equal to zero, J is a CIV. -O zeroinc can cause less
strength reduction to occur in loops that have variable increments.

Default: -O nozeroinc

2.19 -o out_file
The -o out_file option overrides the default executable file name, a.out, with the
name specified by the out_file argument.

If the -o out_file option is specified on the command line along with the -c option,
the load step is disabled and the binary file is written to the out_file specified as an
argument to -o. For more information about the -c option, see -c on page 25.

2.20 -p module_site[,module_site]
The -p module_site option tells the compiler where to look for Fortran modules to
satisfy USE statements. The module_site argument specifies the name of a file or
directory to search for modules. The module_site specified can be a .mod file, .o
(object) file, .a (archive) file, or a directory.

By default, module files are written to the directory from which the ftn command
was executed. Alternatively, you can use the -J dir_name option during compilation
to specify an alternate output directory for .mod files only. The compiler will search
for modules stored in the directories you specified using the -J dir_name option for
the current compilation automatically; you do not need to use the -p option explicitly
to make the compiler do this. For more information about the -J dir_name option,
see -J dir_name on page 39.

58 S–3901–71

Invoking the Cray Fortran Compiler [2]

The search order for satisfying modules references in USE statements is as follows:

1. The current working directory (or -J dir_name directory, if specified).

2. Any directories or files specified with the -p option.

3. Any directories specified with the -I option.

4. Any directories or files specified with the FTN_MODULE_PATH environment
variable.

When searching within a directory, the compiler first searches the .mod files, then
the .o files, then the .a files, and then the directories, in the order specified.

File name substitution (such as *.o) is not allowed. If the path name begins with
a slash (/), the name is assumed to be an absolute path name. Otherwise, it is
assumed to be a path name relative to the working directory. You can specify multiple
module_site locations with the -p option either by separating them with commas
or by using a separate -p argument for each module_site. There is no limit on the
number of -p options you can specify.

Cray provides some modules as part of the Cray Fortran Compiler Programming
Environment. These are referred to as system modules. The system files containing
these modules are searched last.

Example 1: Consider the following command line:

% ftn -p steve.o -p mike.o joe.f

Assume that steve.o contains a module called Rock and mike.o contains a
module called Stone. A reference to use Rock in joe.f causes the compiler to
use Rock from steve.o. A reference to Stone in joe.f causes the compiler
to use Stone from mike.o.

Example 2: The following example specifies binary file murphy.o and library file
molly.a:

% ftn -p murphy.o -p molly.a prog.f

Example 3: In this example, assume that the following directory structure exists in
your home directory:

programs
/ | \

tests one.f two.f
|

use_it.f

The following module is in file programs/one.f, and the compiled version of it is
in programs/one.o:

MODULE one
INTEGER i
END MODULE

S–3901–71 59

Cray Fortran Reference Manual

The next module is in file programs/two.f, and the compiled version of it is
in programs/two.o:

MODULE two
INTEGER j
END MODULE

The following program is in file programs/tests/use_it.f:

PROGRAM demo
USE one
USE two
. . .
END PROGRAM

To compile use_it.f, enter the following command from your home directory,
which contains the subdirectory programs:

% ftn -p programs programs/tests/use_it.f

Example 4: In the next set of program units, a module is contained within the
first program unit and accessed by more than one program unit. The first file,
progone.f, contains the following code:

MODULE split
INTEGER k
REAL a
END MODULE

PROGRAM demopr
USE split
INTEGER j
j = 3
k = 1
a = 2.0
CALL suba(j)
PRINT *, 'j=', j
PRINT *, 'k=', k
PRINT *, 'a=', a
END

60 S–3901–71

Invoking the Cray Fortran Compiler [2]

The second file, progtwo.f, contains the following code:

SUBROUTINE suba(l)
USE split
INTEGER l
l = 4
k = 5
CALL subb(l)
RETURN
END

SUBROUTINE subb(m)
USE split
INTEGER m
m = 6
a = 7.0
RETURN
END

Use the following command line to compile the two files with one ftn command
and a relative pathname:

% ftn -p progone.o progone.f progtwo.f

When the -e m option is in effect, you can use the -p module_site option to
specify one or more directories that contain module files rather than specifying every
individual module file name.

2.21 -Q path
The -Q option specifies the directory that will contain all saved nontemporary files
from this compilation (for example, all .o and .mod files). Specific file types
(like .o files) are saved to a different directory if the -b, -J, -o, or -S option is
specified.

The following examples use this directory structure:

current_dir

bin_out mod_out all_out

The following example saves all nontemporary files (x.o and any .mod files) in the
current directory:

% ftn -b x.o -em x.f90

The following example saves all nontemporary files in the all_out directory and
x.o in the current directory.

% ftn -Q all_out -em -b x.o x.f90

S–3901–71 61

Cray Fortran Reference Manual

The following example saves the x.o file to the bin_out and all .mod files to
the all_out directory.

% ftn -Q all_out -b bin_out/x.o -em x.f90

The following example saves the a.out file to the all_out and all .mod files to
the mod_out directory.

% ftn -Q all_out -J mod_out x.f90

2.22 -r list_opt
The -r list_opt option generates a listing. The list_opt argument produces listings
with commonly needed information.

If one or more input files are specified on the compiler command line, the listing is
placed in file.lst.

The arguments for list_opt are shown below.

Note: Options a, c, l, m, o, s, and x invoke the ftnlx command. Option d
provides a decompiled listing. Option e changes the appearance of the listing
produced by ftnlx.

list_opt Listing type

-r a Includes all reports in the listing (including source, cross
references, lint, loopmarks, common block, and options used during
compilation).

-r c Listing includes a report of all COMMON blocks and all members of
each common block. It also shows the program units that use the
COMMON blocks.

-r d Decompiles (translates) the intermediate representation of the
compiler into listings that resemble the format of the source code.
This is performed twice, resulting in two output files, at different
points during the optimization process. You can use these files to
examine the restructuring and optimization changes made by the
compiler, which can lead to insights about changes you can make to
your Fortran source to improve its performance.

The compiler produces two decompilation listing files with these
extensions per specified source file: .opt and .cg. The compiler
generates the .opt file after applying most high level loop nest
transformations to the code. The code structure of this listing most
resembles your Fortran code and is readable by most users. In
some cases, because of optimizations, the structure of the loops and
conditionals will be significantly different than the structure in your
source file.

62 S–3901–71

Invoking the Cray Fortran Compiler [2]

The .cg file contains a much lower level of decompilation. It is still
displayed in a Fortran-like format, but is quite close to what will be
produced as assembly output. This version displays the intermediate
text after all vector translation and other optimizations have been
performed. An intimate knowledge of the hardware architecture of
the system is helpful to understanding this listing.

The .opt and .cg files are intended as a tool for performance
analysis, and are not valid Fortran source code. The format and
contents of the files can be expected to change from release to
release.

The following examples show the listings generated when -rd is
applied to this example:

Note: The column of numbers in the left-hand side of the .opt
and .cg files refer to the line number in the Fortran source file.

!Source code, in file example.f:

subroutine example(a, b, c)
real a(*), b(*), c(*)
do i = 1,100

a(i) = b(i) * c(i)
enddo

end

Enter the following command:

% ftn -c -rd example.f

This is the listing of the example.opt file after loop optimizations
are performed:

1. subroutine example(a, b, c)
3. $Induc01_N4 = 0

3. !dir$ ivdep

3. do
4. A(1 + $Induc01_N4) = C(1 + $Induc01_N4) * B(1 +
4. . $Induc01_N4)
5. $Induc01_N4 = 1 + $Induc01_N4
3. if ($Induc01_N4 >= 100) exit
3. enddo
6. return
6. end

-r e Expands included files in the source listing.

This option is off by default.

-r l Lists source code and includes lint style checking. The listing
includes the COMMON block report (see the -r c option for more
information about the COMMON block report).

S–3901–71 63

Cray Fortran Reference Manual

-r m Produces a source listing with loopmark information. To provide
a more complete report, this option automatically enables the -O
negmsg option to show why loops were not optimized. If you do
not require this information, use the -O nonegmsg option on the
same command line.

Loopmark information will not be displayed if the -d B option has
been specified.

-r o Show in the list file all options used by the compiler at compile time.

-r s Lists source code and messages. Error and warning messages are
interspersed with the source lines. Optimization messages appear
after each program unit. Produces 80-column output by default.

-r T Retains file.T after processing rather than deleting it. The file.T
can be used to call ftnlx directly. For more information, see the
ftnlx(1) man page.

-r x Generates a cross-reference listing. Produces 80-column output by
default.

2.23 -R runchk
The -R runchk option lets you specify any of a group of runtime checks for your
program. To specify more than one type of checking, specify consecutive runchk
arguments, such as: -R ab.

Note: Performance is degraded when runtime checking is enabled. This capability,
though useful for debugging, is not recommended for production runs.

The runtime checks available are as follows:

runchk Checking performed

a (Deferred implementation) Compares the number and types of
arguments passed to a procedure with the number and types
expected.

Note: When -R a is specified, some pattern matching may
be lost because some of the library calls typically found in the
generated code may not be present. This occurs when -R a
is specified in conjunction with one of the following other
options: -O 2 (the default optimization level), -O 3, -O ipa2,
-O ipa3, -O ipa4 or -O ipa5.

b Enables checking of array bounds. If a problem is detected at run
time, a message is issued but execution continues. The NOBOUNDS
directive overrides this option. For more information about
NOBOUNDS, see Check Array Bounds: [NO]BOUNDS on page 111.

64 S–3901–71

Invoking the Cray Fortran Compiler [2]

Note: Bounds checking behavior differs with the optimization
level. At the default optimization level, -O 2, some runtime
checking is inhibited. Complete checking is guaranteed only
when optimization is turned off by specifying -O 0 on the ftn
command line.

c Enables conformance checking of array operands in array
expressions. Even without the -R option, such checking is performed
during compilation when the dimensions of array operands can be
determined.

C (Deferred implementation) Passes a descriptor for the actual
arguments as an extra argument to the called routine and sets a flag to
signal the called routine that this descriptor is included.

d Enables directive checking at runtime. Errors detected at compile
time are reported during compilation and so are not reported
at runtime. The collapse directive is checked, as are the
loop_info clauses min_trips and max_trips. Violation of a
runtime check results in an immediate fatal error diagnostic.

E (Deferred implementation) Creates a descriptor for the dummy
arguments at each entry point and tests the flag from the caller to
see if argument checking should be performed. If the flag is set, the
argument checking is done.

M msgnum[,msgnum]...

(Deferred implementation) Suppresses one or more specific runtime
argument checking messages.

This suboption cannot be specified along with any other -R options.
For example, if you want to specify -Ra and -RM, you must specify
them as two separate options to the ftn command, as follows:

ftn -RM1640 -Ra otter.f.

You can use a comma to separate multiple message numbers. In
the following example, runtime argument checking is enabled, but
messages 1953 and 1946 are suppressed:

ftn -Ra -RM1953,1946 raccoon.f

n (Deferred implementation) Compares the number of arguments
passed to a procedure with the number expected. Does not make
comparisons with regard to argument data type (see -R a).

S–3901–71 65

Cray Fortran Reference Manual

p Generates runtime code to check the association or allocation status
of referenced POINTER variables, ALLOCATABLE arrays, or
assumed-shape arrays. A warning message is issued at run time for
references to disassociated pointers, unallocated allocatable arrays,
or assumed shape dummy arguments that are associated with a
pointer or allocatable actual argument when the actual argument is
not associated or allocated.

s Enables checking of character substring bounds. This option behaves
similarly to option -R b.

Note: Bounds checking behavior differs with the optimization
level. At the default optimization level, -O 2, some runtime
checking is inhibited. Complete checking is guaranteed only
when optimization is turned off by specifying -O 0 on the ftn
command line.

If argument checking is to be done for a particular call, the calling routine must have
been compiled with either -R a or -R C and the called routine must have been
compiled with either -R a or -R E. -R a is equivalent to -R CE. The separation
of -R a into -R C and -R E allows some control over which calls are checked.

Libraries can be compiled with -R E. If the program that is calling the libraries is
compiled with either -R a or -R C, library calls are checked. If the calling routines
are not compiled with -R a or -R C, no checking occurs.

Slight overhead is added to each entry sequence compiled with -R E or -R a and to
each call site compiled with -R C or -R a. If a call site passes the extra information
to an entry that is compiled to perform checking, the checking itself costs a few
thousand clock periods per call. This cost depends on the number of arguments at
the call.

Some nonstandard code behaves differently when argument checking is used.
Different behavior can include runtime aborts or changed results. The following
example illustrates this:

CALL SUB1(10,15)
CALL SUB1(10)
END

SUBROUTINE SUB1(I,K)
PRINT *,I,K
END

Without argument checking, if the two calls in this example share the same stack
space for arguments, subroutine SUB1 prints the values 10 and 15 for both calls.
However, with argument checking enabled, an extra argument is added to the
argument list, overwriting any previous information that was there. In this case, the
second call to SUB1 prints 10, followed by an incorrect value.

66 S–3901–71

Invoking the Cray Fortran Compiler [2]

If full argument checking is enabled by -R a, a message reporting the mismatch in
the number of arguments is issued. This problem occurs only with nonstandard code
in which the numbers of actual and dummy arguments do not match.

2.24 -s size
The -s size option allows you to modify the sizes of variables, literal constants, and
intrinsic function results declared as type REAL, INTEGER, LOGICAL, COMPLEX,
DOUBLE COMPLEX, or DOUBLE PRECISION. Use one of these for size:

size Action

byte_pointer

(Default) Applies a byte scaling factor to integers used in pointer
arithmetic involving Cray pointers. That is, Cray pointers are moved
on byte instead of word boundaries. Pointer arithmetic scaling is
explained in Pointer Scaling Factor on page 69.

default32

(Default) Adjusts the data size of default types as follows:

• 32 bits: REAL, INTEGER, LOGICAL

• 64 bits: COMPLEX, DOUBLE PRECISION

• 128 bits: DOUBLE COMPLEX

Note: The data sizes of integers and logicals that use explicit kind
and star values are not affected by this option. However, they are
affected by the -e h option. See -d disable and -e enable on
page 25.

default64

Adjust the data size of default types as follows:

• 64 bits: REAL, INTEGER, LOGICAL

• 64 bits: DOUBLE PRECISION (implied -dp)

• 128 bits: COMPLEX

• 128 bits: DOUBLE COMPLEX (implied -dp)

If you used the -s default64 at compile time, you must also
specify this option when invoking the ftn command.

S–3901–71 67

Cray Fortran Reference Manual

Note: The data sizes of integers and logicals that use explicit kind
and star values are not affected by this option. However, they are
affected by the -eh option. See -d disable and -e enable on
page 25.

integer32 (Default) Adjusts the default data size of default integers and logicals
to 32 bits.

integer64 Adjusts the default data size of default integers and logicals to 64
bits.

real32 (Default) Adjusts the default data size of default real types as
follows:

• 32 bits: REAL

• 64 bits: COMPLEX and DOUBLE PRECISION

• 128 bits: DOUBLE COMPLEX

real64 Adjusts the default data size of default real types as follows:

• 64 bits: REAL

• 64 bits: DOUBLE PRECISION (implied -dp)

• 128 bits: COMPLEX

• 128 bits: DOUBLE PRECISION (implied -dp)

word_pointer

Applies a word scaling factor to integers used in pointer arithmetic
involving Cray pointers. That is, Cray pointers are moved on word
instead of byte boundaries. Pointer arithmetic scaling is explained
later in Pointer Scaling Factor on page 69.

The default data size options (for example, -s default64) option does not
affect the size of data that explicitly declare the size of the data (for example,
REAL(KIND=4) R.

Note: REAL(KIND=16) and COMPLEX(KIND=16) are not supported.

2.24.1 Different Default Data Size Options on the Command Line

You must be careful when mixing different default data size options on the same
command line because equivalencing data of one default size with data of another
default size can cause unexpected results. For example, assume that the following
command line is used for a program:

% ftn -s default64 -s integer32 ...

68 S–3901–71

Invoking the Cray Fortran Compiler [2]

The mixture of these default size options causes the program below to equivalence
32-bit integer data with 64-bit real data and to incompletely clear the real array.

Program test
IMPLICIT NONE

real r
integer i
common /blk/ r(10), i(10)
integer overlay(10)

equivalence (overlay, r)

call clear(overlay)
call clear(i)

contains
subroutine clear(i)

integer, dimension (10) :: i

i = 0
end subroutine

end program test

The above program sets only the first 10 32-bit words of array r to zero. It should
instead set 10 64-bit words to zero.

2.24.2 Pointer Scaling Factor

You can specify that the compiler apply a scaling factor to integers used in pointer
arithmetic involving Cray pointers so that the pointer is moved to the proper word or
byte boundary. For example, the compiler views this code statement:

Cray_ptr = Cray_ptr + integer_value

as

Cray_ptr = Cray_ptr + (integer_value * scaling_factor)

The scaling factor is dependent on the size of the default integer and which scaling
option (-s byte_pointer or -s word_pointer) is enabled.

Table 5. Scaling Factor in Pointer Arithmetic

Scaling Option Default Integer Size Scaling Factor

-s byte_pointer 32 or 64 bits 1

-s word_pointer and -s default32 enabled 32 bits 4

-s word_pointer and -s default64 enabled 64 bits 8

S–3901–71 69

Cray Fortran Reference Manual

Therefore, when the -s byte_pointer option is enabled, this example
increments ptr by i bytes:

pointer (ptr, ptee) !Cray pointer

ptr = ptr + i

When the -s word_pointer and -s default32 options are enabled, the same
example is viewed by the compiler as:

ptr = ptr + (4*i)

When the -s word_pointer and -s default64 options are enabled, the same
example is viewed by the compiler as:

ptr = ptr + (8*i)

2.25 -S asm_file
The -S asm_file option specifies the assembly language output file name. When
-S asm_file is specified on the command line with either the -e S or -b
bin_obj_file options, the -e S and -b bin_obj_file options are overridden.

2.26 -T

The -T option disables the compiler but displays all options currently in effect.
The Cray Fortran compiler generates information identical to that generated when
the -v option is specified on the command line; when -T is specified, however,
no processing is performed. When this option is specified, output is written to the
standard error file (stderr).

2.27 -U identifier [,identifier] ...
The -U identifier [,identifier] ... option undefines variables used for source
preprocessing. This option removes the initial definition of a predefined macro or sets
a user predefined macro to an undefined state.

The -D identifier [=value] option defines variables used for source preprocessing.
If both -D and -U are used for the same identifier, in any order, the identifier is
undefined. For more information about the -D option, see -D identifier [=value] on
page 32.

This option is ignored unless one of the following conditions is true:

• The Fortran input source file is specified as either file.F, file.F90, file.F95,
file.F03, file.F08, or file.FTN.

• The -e P or -e Z options have been specified.

70 S–3901–71

Invoking the Cray Fortran Compiler [2]

By default, macros are not expanded in Fortran source statements. Use the -F option
to enable macro expansion in Fortran source statements.

For more information about source preprocessing, see Chapter 5, Source
Preprocessing on page 125.

2.28 -v

The -v option sends compilation information to the standard error file (stderr).
The information generated indicates the compilation phases as they occur and all
options and arguments being passed to each processing phase.

2.29 -V

The -V option displays to the standard error file (stderr) the release version of the
ftn command. Unlike all other command-line options, you can specify this option
without specifying an input file name; that is, specifying ftn -V is valid.

2.30 -Wa"assembler_opt"
The -Wa"assembler_opt" option passes assembler_opt directly to the assembler. For
example, -Wa"-h" passes the -h option directly the as command, directing it to
enable all pseudos, regardless of location field name. This option is meaningful to
the system only when file.s is specified as an input file on the command line. For
more information about assembler options, see the as(1) man page.

2.31 -Wr"lister_opt"
The -Wr"lister_opt" option passes lister_opt directly to the ftnlx command. For
example, specifying -Wr"-o cfile.o" passes the argument cfile.o directly to
the ftnlx command's -o option; this directs ftnlx to override the default output
listing and put the output file in cfile.o. If you specify the -Wr"lister_opt"
option, you must specify the -r list_opt option. For more information about options,
see the ftnlx man page.

2.32 -x dirlist
The -x dirlist option disables specified directives or specified classes of directives.
If specifying a multiword directive, either enclose the directive name in quotation
marks or remove the spaces between the words in the directive's name.

S–3901–71 71

Cray Fortran Reference Manual

For dirlist, enter one of the following arguments:

dirlist Item disabled

all All compiler directives and OpenMP Fortran directives. For
information about the OpenMP directives see Chapter 6, Using the
OpenMP Fortran API on page 135.

dir All compiler directives.

directive One or more compiler directives or OpenMP Fortran directives. If
specifying more than one, separate them with commas; for example:
-x INLINEALWAYS,"NO SIDE EFFECTS",BOUNDS.

omp All OpenMP Fortran directives.

conditional_omp

All C$ and !$ conditional compilation lines.

2.33 -X npes
The -X npes option specifies the number of processing elements (PEs) that will be
specified at job launch. The value for npes ranges from 1 through 65535 inclusive.

If -X is specified, the user must invoke aprun -n npes using the same value for
npes. Otherwise, the generated code is in error and execution behavior is undefined.

N$PES is a special symbol whose value is equal to the number of PEs available to
your program. When the -X npes option is specified at compile time, the N$PES
constant is replaced by integer value npes.

The N$PES constant can be used only in these situations:

• The -X npes option is specified on the command line, or

• The value of the expression containing the N$PES constant is not known until run
time (that is, it can only be used in runtime expressions)

One of the uses for the N$PES symbol is illustrated in the following example, which
declares the size of an array within a subroutine to be dependent upon the number
of processors:

SUBROUTINE WORK
DIMENSION A(N$PES)

Using the N$PES symbol in conjunction with the -X npes option allows the
programmer to program the number of PEs into a program in places that do not
accept runtime values. Specifying the number of PEs at compile time can also
enhance compiler optimization.

72 S–3901–71

Invoking the Cray Fortran Compiler [2]

The programmer is responsible for ensuring that all object files are compiled and
linked with the same -X npes value and for running the resulting executable on that
number of PEs. If mixed -X values are used when compiling and linking different
object files, or the number of PEs specified at runtime differs from that specified
when compiling and linking, program behavior is undefined.

2.34 -Yphase,dirname
The -Yphase,dirname option specifies a new directory (dirname) from which the
designated phase should be executed. phase can be one or more of the values shown
in Table 6.

Table 6. -Yphase Definitions

phase System phase Command

0 Compiler ftn

a Assembler as

2.35 --

The -- symbol signifies the end of options. After this symbol, you can specify files
to be processed. This symbol is optional. It may be useful if your input file names
begin with one or more dash (-) characters.

S–3901–71 73

Cray Fortran Reference Manual

2.36 sourcefile[sourcefile.suffix ...]

The sourcefile[sourcefile.suffix ...] option names the file or files to be processed.
The file suffixes indicate the content of each file and determine whether the
preprocessor, compiler, assembler, or loader will be invoked.

Preprocessor

Files having the F, F90, F95, F03, F08, or FTN suffix invoke the
preprocessor.

Compiler Fortran source files having the following suffixes invoke the
compiler:

• .f or .F, indicates a fixed source form file.

• .f90, .F90, .f95, .F95, .f03, .F03, .f08, .F08, .ftn,
.FTN, indicates a free source form file.

Note: The source form specified on the -f source_form
option overrides the source form implied by the file suffixes.

Loader Files with a .o extension (object files) invoke the loader. If only one
source file is specified on the command line, the .o file is created
and deleted. To retain the .o file, use the -c option to disable the
loader.

You can specify object files produced by the Cray Fortran, C, C++,
or assembler compilers. Object files are passed to the loader in the
order in which they appear on the ftn command line. If the loader is
disabled by the -b or -c option, no files are passed to the loader.

74 S–3901–71

Setting Environment Variables [3]

Environment variables are predefined shell variables, taken from the execution
environment, that determine some of your shell characteristics. Several environment
variables pertain to the Cray Fortran compiler. The Cray Fortran compiler recognizes
general and multiprocessing environment variables.

The multiprocessing variables in the following sections affect the way your program
will perform on multiple processors. Using environment variables lets you tune the
system for parallel processing without rebuilding libraries or other system software.

The variables allow you to control parallel processing at compile time and at run time.
Compile time environment variables apply to all compilations in a session.

The following examples show how to set an environment variable:

• With the standard shell, enter:

CRAY_FTN_OPTIONS=options
export CRAY_FTN_OPTIONS

• With the C shell, enter:

setenv CRAY_FTN_OPTIONS options

The following sections describe the environment variables recognized by the Cray
Fortran compiler.

Note: Many of the environment variables described in this chapter refer to the
default system locations of Programming Environment components. If the Cray
Fortran Compiler Programming Environment has been installed in a non-default
location, see your system support staff for path information.

3.1 Compiler and Library Environment Variables
The variables described in the following subsections allow you to control parallel
processing at compile time.

S–3901–71 75

Cray Fortran Reference Manual

3.1.1 CRAY_FTN_OPTIONS Environment Variable

The CRAY_FTN_OPTIONS environment variable specifies additional options to
attach to the command line. This option follows the options specified directly on the
command line. File names cannot appear. These options are inserted at the rightmost
portion of the command line before the input files and binary files are listed. This
allows you to set the environment variable once and have the specified set of options
used in all compilations. This is especially useful for adding options to compilations
done with build tools.

For example, assume that this environment variable was set as follows:

setenv CRI_FTN_OPTIONS -G0

With the variable set, the following two command line specifications are equivalent:

% ftn -c t.f
% ftn -c -G0 t.f

3.1.2 CRAY_PE_TARGET Environment Variable

The CRAY_PE_TARGET environment variable specifies the target_system for
compilation. The command line option -h cpu=target_system takes precedence
over the CRAY_PE_TARGET setting.

The currently acceptable values for CRAY_PE_TARGET are x86-64, opteron,
barcelona, shanghai, or istanbul. At this time the x86-64 and opteron
options produce identical output.

If you are creating executables for use on a barcelona or shanghai (quad-core)
or istanbul (six-core) system, you must also have the associated module,
xtpe-barcelona, xtpe-shanghai, or xtpe-istanbul, loaded when
compiling and linking your code. If one of these modules is loaded, the default
target_system changes to the corresponding cpu target.

If the target_system is set to barcelona, shanghai, or istanbul during
compilation of any source file, it must also be set to that same target during linking
and loading.

3.1.3 FORMAT_TYPE_CHECKING Environment Variable

The FORMAT_TYPE_CHECKING environment variable specifies various levels of
conformance between the data type of each I/O list item and the formatted data edit
descriptor.

When set to RELAXED, the runtime I/O library enforces limited conformance
between the data type of each I/O list item and the formatted data edit descriptor.

76 S–3901–71

Setting Environment Variables [3]

When set to STRICT77, the runtime I/O library enforces strict FORTRAN 77
conformance between the data type of each I/O list item and the formatted data edit
descriptor.

When set to STRICT90 or STRICT95, the runtime I/O library enforces strict
Fortran 90/95 conformance between the data type of each I/O list item and the
formatted data edit descriptor.

See the following tables: Table 16, Table 17, Table 18, and Table 19.

3.1.4 FORTRAN_MODULE_PATH Environment Variable

Like the Cray Fortran compiler -p module_site command line option, this
environment variable allows you to specify the files or the directory to search for the
modules to use. The files can be archive files, build files (bld file), or binary files.

The compiler appends the paths specified by the FORTRAN_MODULE_PATH
environment variable to the path specified by the -p module_site command
line option.

Since the FORTRAN_MODULE_PATH environment variable can specify multiple files
and directories, a colon separates each path as shown in the following example:

% set FORTRAN_MODULE_PATH='path1 : path2 : path3'

3.1.5 LISTIO_PRECISION Environment Variable

The LISTIO_PRECISION environment variable controls the number of digits of
precision printed by list-directed output. The LISTIO_PRECISION environment
variable can be set to FULL or PRECISION.

• FULL prints full precision (default).

• PRECISION prints x or x + 1 decimal digits, where x is value of the
PRECISION intrinsic function for a given real value. This is a smaller number
of digits, which usually ensures that the last decimal digit is accurate to within 1
unit. This number of digits is usually insufficient to assure that subsequent input
will restore a bit-identical floating-point value.

3.1.6 NLSPATH Environment Variable

The NLSPATH environment variable specifies the message system library catalog
path. This environment variable affects compiler interactions with the message
system. For more information about this environment variable, see catopen(3).

S–3901–71 77

Cray Fortran Reference Manual

3.1.7 NPROC Environment Variable

The NPROC environment variable specifies the maximum number of processes to be
run. Setting NPROC to a number other than 1 can speed up a compilation if machine
resources permit.

The effect of NPROC is seen at compilation time, not at execution time. NPROC
requests a number of compilations to be done in parallel. It affects all the compilers
and also make.

For example, assume that NPROC is set as follows:

setenv NPROC 2

The following command is entered:

ftn -o t main.f sub.f

In this example, the compilations from .f files to .o files for main.f and sub.f
happen in parallel, and when both are done, the load step is performed. If NPROC is
unset, or set to 1, main.f is compiled to main.o; sub.f is compiled to sub.o,
and then the link step is performed.

You can set NPROC to any value, but large values can overload the system. For
debugging purposes, NPROC should be set to 1. By default, NPROC is 1.

3.1.8 TMPDIR Environment Variable

The TMPDIR environment variable specifies the directory containing the compiler
temporary files. The location of the directory is defined by your administrator and
cannot be changed.

3.1.9 ZERO_WIDTH_PRECISION Environment Variable

The ZERO_WIDTH_PRECISION environment variable controls the field width
when field width w of Fw.d is zero on output. The ZERO_WIDTH_PRECISION
environment variable can be set to PRECISION or HALF.

• PRECISION specifies that full precision will be written. This is the default.

• HALF specifies that half of the full precision will be written.

3.2 OpenMP Environment Variables
For Cray-specific information about OpenMP environment variables, see Chapter
6, Using the OpenMP Fortran API on page 135. For documentation of standard
OpenMP environment variables, see the OpenMP Application Program Interface
Version 3.0 May 2008 standard (http://openmp.org/wp/openmp-specifications/).

78 S–3901–71

http://openmp.org/wp/openmp-specifications/

Setting Environment Variables [3]

3.3 Run Time Environment Variables
Run time environment variables allow you to adjust the following elements of your
run time environment:

• Stack and heap sizes, see the memory(7) man page for more information.

• Default options for automatic aprun, see the CRAY_AUTO_APRUN_OPTIONS
environment variable in the aprun(1) man page.

• The field width w of Fw.d when w is zero on output, refer to
the ZERO_WIDTH_PRECISION environment variable in
ZERO_WIDTH_PRECISION Environment Variable on page 78.

3.3.1 aprun Resource Limits

Use the APRUN_XFER_LIMITS runtime environment variable to control the
forwarding of aprun user resource limits.

On Cray Linux Environment (CLE) 2.2 systems, this forwarding is disabled
by default (except for RLIMIT_CPU and RLIMIT_CORE, which are
always forwarded). To enable forwarding of all other resource limits, set
APRUN_XFER_LIMITS to 1.

On Cray Linux Environment (CLE) 2.1 systems, this forwarding in enabled by
default, and the aprun command forwards its user resource limits, both soft and hard
(see the getrlimit(2) man page), to each compute node, where those limits are
set for the application. Cray recommends that this forwarding be disabled, by setting
APRUN_XFER_LIMITS to 0.

S–3901–71 79

Cray Fortran Reference Manual

The forwarded limits are:

• RLIMIT_CPU

• RLIMIT_FSIZE

• RLIMIT_DATA

• RLIMIT_STACK

• RLIMIT_CORE

• RLIMIT_RSS

• RLIMIT_NPROC

• RLIMIT_NOFILE

• RLIMIT_MEMLOCK

• RLIMIT_AS

• RLIMIT_LOCKS

• RLIMIT_SIGPENDING

• RLIMIT_MSGQUEUE

• RLIMIT_NICE

• RLIMIT_RTPRIO

This forwarding of user resource limits can cause problems on systems where the
login node's limits are more restrictive than the default compute node limits. For
example, during execution, if your program attempts to exceed the stack size limit,
the message stack overflow is printed and a segmentation fault occurs.

If user resource limit forwarding is disabled (APRUN_XFER_LIMITS=0), only the
RLIMIT_CORE resource limit is forwarded.

Note: The APRUN_XFER_LIMITS environment variable is available on
CLE release 2.1 or later only. On UNICOS/lc systems, use the ulimit -s
unlimited command to increase the stack size limit.

80 S–3901–71

Using Cray Fortran Directives [4]

Directives are lines inserted into source code that specify actions to be performed by
the compiler. They are not Fortran statements.

This chapter describes the Cray Fortran compiler directives. If you specify a directive
while running on a system that does not support that particular directive, the compiler
generates a message and continues with the compilation.

Note: The Cray Fortran compiler also supports the OpenMP Fortran API
directives. See Chapter 6, Using the OpenMP Fortran API on page 135 for more
information.

Using Directives on page 85 describes how to use the directives and the effects they
have on programs.

Table 7 categorizes the Cray Fortran compiler directives according to purpose and
directs you to the pages containing more details.

Table 7. Directives

Purpose and Name Description

Vectorization:

COPY_ASSUMED_SHAPE Copy arrays to temporary storage. For more information, see
Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE
on page 90.

HAND_TUNED Assert that the loop has been hand-tuned for maximum
performance and restrict automatic compiler optimizations. For
more information, see Limit Optimizations: HAND_TUNED on
page 91.

IVDEP Ignore loop vector-dependencies that a loop might have. For more
information, see Ignore Vector Dependencies: IVDEP on page 91.

NEXTSCALAR Disable loop vectorization. For more information, see Specify
Scalar Processing: NEXTSCALAR on page 92.

[NO]PATTERN Replace or do not replace recognized code patterns with
optimized library routines. For more information, see Request
Pattern Matching: [NO]PATTERN on page 92.

S–3901–71 81

Cray Fortran Reference Manual

Purpose and Name Description

PERMUTATION Declare that an integer array has no repeating values. For more
information, see Declare an Array with No Repeated Values:
PERMUTATION on page 93.

[NO]PIPELINE Attempt to force or inhibit software-based vector pipelining.
For more information, see Enable or Disable, Temporarily, Soft
Vector-pipelining: [NO]PIPELINE on page 102.

PREFERVECTOR Vectorize nested loops. For more information, see Designate Loop
Nest for Vectorization: PREFERVECTOR on page 94.

PROBABILITY Suggest the probability of a branch being executed. For more
information, see Conditional Density: PROBABILITY on
page 94.

SAFE_ADDRESS Speculatively execute memory references within a loop. For
more information, see Allow Speculative Execution of Memory
References within Loops: SAFE_ADDRESS on page 95.

SAFE_CONDITIONAL Speculatively execute memory references and arithmetic
operations within a loop. For more information, see Allow
Speculative Execution of Memory References and Arithmetic
Operations: SAFE_CONDITIONAL on page 96.

LOOP_INFO Provide loop count and cache allocation information to the
optimizer to produce faster code sequences. This directive can be
used to override CACHE or CACHE_NT. For more information,
see Provide More Information for Loops: LOOP_INFO
on page 97 and Autothreading for Loops: LOOP_INFO
PREFER_[NO]THREAD on page 99.

SHORTLOOP[128] The SHORTLOOP and SHORTLOOP128 directives are special
cases of LOOP_INFO and are superseded by the general
LOOP_INFO directive. For more information, see Designate
Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP128
on page 97.

[NO]UNROLL Unroll or do not unroll loops to improve performance. For more
information, see Unroll Loops: [NO]UNROLL on page 99.

[NO]VECTOR Vectorize or do not vectorize loops and array statements.
For more information, see Enable and Disable Vectorization:
[NO]VECTOR on page 102.

Inlining:

[NO]CLONE, RESETCLONE Attempt cloning or do not attempt cloning at call sites, or reset
cloning to the state specified on the command line. For more
information, see Disable or Enable Cloning for a Block of Code:
[NO]CLONE and RESETCLONE on page 103.

82 S–3901–71

Using Cray Fortran Directives [4]

Purpose and Name Description

[NO]INLINE, RESETINLINE Attempt to inline or do not attempt to inline call sites, or reset
inlining to the state specified on the command line. For more
information, see Disable or Enable Inlining for a Block of Code:
[NO]INLINE and RESETINLINE on page 104.

INLINENEVER, INLINEALWAYS Never or always inline the specified procedures. For
more information, see Specify Inlining for a Procedure:
INLINEALWAYS and INLINENEVER on page 104.

[NO]MODINLINE Enable or disable inlineable templates for the designated
procedures. For more information, see Create Inlinable Templates
for Module Procedures: [NO]MODINLINE on page 105.

Scalar optimization:

[NO]INTERCHANGE Control whether or not to interchange the order of the two or more
loops immediately following the directive. For more information,
see Control Loop Interchange: [NO]INTERCHANGE on
page 106.

[NO]COLLAPSE Collapse or do not collapse the loop nest immediately following
the directive. For more information, see Control Loop Collapse:
[NO]COLLAPSE on page 108.

NOSIDEEFFECTS Tell the compiler that the data in the registers will not change
when calling the specified subprogram. For more information, see
Determine Register Storage: NOSIDEEFFECTS on page 109.

SUPPRESS Suppress scalar optimization of specified variables. For more
information, see Suppress Scalar Optimization: SUPPRESS on
page 110.

Local use of compiler features:

[NO]BOUNDS Check or do not check the bounds of array references. For
more information, see Check Array Bounds: [NO]BOUNDS on
page 111.

FREE, FIXED Specify that the source uses a free or fixed format. For more
information, see Specify Source Form: FREE and FIXED on
page 113.

Storage:

BLOCKABLE Specify that it is legal to cache block subsequent loops. For more
information, see Permit Cache Blocking: BLOCKABLE Directive
on page 113.

BLOCKINGSIZE, NOBLOCKING Assert that the loop following the directive is or is not involved
in cache blocking. For more information, see Declare Cache
Blocking: BLOCKINGSIZE and NOBLOCKING Directives on
page 114.

S–3901–71 83

Cray Fortran Reference Manual

Purpose and Name Description

STACK Allocate variables on the stack. For more information, see
Request Stack Storage: STACK on page 115.

Miscellaneous:

[NO]AUTOTHREAD Turn autothreading on and off for the selected block of
code. For more information, see Control Autothreading:
[NO]AUTOTHREAD on page 116.

CACHE Advisory directive to override automatic cache allocation and
keep specified objects in cache. For more information, see
Allocate Cache: CACHE on page 117.

CACHE_NT Advisory directive to override automatic cache allocation
and prevent specified objects from being cached. For more
information, see Non-temporal Reads and Writes: CACHE_NT on
page 117.

CONCURRENT Convey user-known array dependencies to the compiler. For more
information, see Specify Array Dependencies: CONCURRENT on
page 118.

[NO]FUSION Fine-tune the selection of the DO loops to be fused. For more
information, see Fuse Loops: [NO]FUSION on page 118.

ID Insert a character string into the file.o object file. For more
information, see Create Identification String: ID on page 119.

IGNORE_TKR Ignore the type, kind, and rank (TKR) of specified dummy
arguments of a procedure interface. For more information,
see Disregard Dummy Argument Type, Kind, and Rank:
IGNORE_TKR on page 120.

NAME Define a name that uses characters that are outside of the Fortran
character set. See External Name Mapping: NAME on page 121.

PREPROCESS Allow an include file to be preprocessed when the compiler
command line does not specify preprocessing. See Preprocess
Include File: PREPROCESS on page 122.

WEAK Define a procedure reference as weak. See Specify Weak
Procedure Reference: WEAK on page 122.

84 S–3901–71

Using Cray Fortran Directives [4]

4.1 Using Directives

4.1.1 Directive Lines

A directive line begins with the characters CDIR$ or !DIR$. How you specify
directives depends on the source form you are using, as follows:

• If using fixed source form, indicate a directive line by placing the characters
CDIR$ or !DIR$ in columns 1 through 5. If the compiler encounters a nonblank
character in column 6, the line is assumed to be a directive continuation line.
Columns 7 and beyond can contain one or more directives. Characters in
directives entered in columns beyond the default column width are ignored.

• If using free source form, indicate a directive by the characters !DIR$, followed
by a space, and then one or more directives. If the position following the !DIR$
contains a character other than a blank, tab, or newline character, the line is
assumed to be a continuation line. The !DIR$ need not start in column 1, but it
must be the first text on a line.

In the following example, an asterisk (*) appears in column 6 to indicate that the
second line is a continuation of the preceding line:

!DIR$ NOSIDEEFFECTS
!DIR$*ab

The FIXED and FREE directives must appear alone on a directive line and cannot
be continued.

If you want to specify more than one directive on a line, separate each directive with
a comma. Some directives require that you specify one or more arguments; when
specifying a directive of this type, no other directive can appear on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of source
form.

Code portability is maintained despite the use of directives. In the following example,
the ! symbol in column 1 causes other compilers to treat the Cray Fortran compiler
directive as a comment:

A=10.
!DIR$ NOVECTOR

DO 10,I=1,10...

Do not use source preprocessor (#) directives within multiline compiler directives
(CDIR$ or !DIR$).

S–3901–71 85

Cray Fortran Reference Manual

4.1.2 Range and Placement of Directives

The range and placement of directives are as follows:

• The FIXED and FREE directives can appear anywhere in your source code. All
other directives must appear within a program unit.

• These directives must reside in the declarative portion of a program unit and apply
only to that program unit:

– CACHE

– CACHE_NT

– COPY_ASSUMED_SHAPE

– IGNORE_TKR

– INLINEALWAYS, INLINENEVER, RESETINLINE

– NAME

– NOSIDEEFFECTS

– STACK

– PREPROCESS

– WEAK

• The following directives toggle a compiler feature on or off at the point at which
the directive appears in the code. These directives are in effect until the opposite
directive appears, until the directive is reset, or until the end of the program unit,
at which time the command line settings become the default for the remainder of
the compilation.

– [NO]AUTOTHREAD

– [NO]BOUNDS

– [NO]CLONE, RESETCLONE

– [NO]INLINE

– [NO]INTERCHANGE

– [NO]PATTERN

– [NO]VECTOR

• The SUPPRESS directive applies at the point at which it appears.

• The ID directive does not apply to any particular range of code. It adds
information to the file.o generated from the input program.

86 S–3901–71

Using Cray Fortran Directives [4]

• The following directives apply only to the next loop or block of code encountered
lexically:

– BLOCKABLE

– BLOCKINGSIZE, NOBLOCKING

– CONCURRENT

– HAND_TUNED

– [NO]INTERCHANGE

– IVDEP

– NEXTSCALAR

– PERMUTATION

– [NO]PIPELINE

– PREFERVECTOR

– PROBABILITY

– SAFE_ADDRESS

– SAFE_CONDITIONAL

– SHORTLOOP[128]

– LOOP_INFO

– LOOP_INFO PREFER_[NO]THREAD

– [NO]UNROLL

• The MODINLINE and NOMODINLINE directives are in effect for the scope of the
program unit in which they are specified, including all contained procedures.
If one of these directives is specified in a contained procedure, the contained
procedure's directive overrides the containing procedure's directive.

4.1.3 Interaction of Directives with the -x Command Line Option

The -x option on the ftn command accepts one or more directives as arguments.
When your input is compiled, the compiler ignores directives named as arguments
to the -x option. If you specify -x all, all directives are ignored. If you specify
-x dir, all directives preceded by !DIR$ or CDIR$ are ignored.

For more information about the -x option, see -x dirlist on page 71.

S–3901–71 87

Cray Fortran Reference Manual

4.1.4 Command Line Options and Directives

Some features activated by directives can also be specified on the ftn command line.
A directive applies to parts of programs in which it appears, but a command line
option applies to the entire compilation.

Vectorization, scalar optimization, and tasking can be controlled through both
command line options and directives. If a compiler optimization feature is disabled
by default or is disabled by an argument to the -O option to the ftn command, the
associated !prefix$ directives are ignored. The following list shows Cray Fortran
compiler optimization features, related command line options, and related directives:

• Specifying the -O 0 option on the command line disables all optimization. All
scalar optimization and vectorization directives are ignored.

• Specifying the -O ipa0 option on the command line disables inlining and
causes the compiler to ignore all inlining directives.

• Specifying the -O scalar0 option disables scalar optimization and causes the
compiler to ignore all scalar optimization and all vectorization directives.

• Specifying the -O noomp option disables OpenMP and causes the compiler
to ignore OpenMP directives.

• Specifying the -O thread0 option disables both OpenMP and autothreading
and causes the compiler to ignore OpenMP and autothreading directives.

• Specifying the -O vector0 option causes the compiler to ignore all
vectorization directives. Specifying the NOVECTOR directive in a program unit
causes the compiler to ignore subsequent directives in that program unit that may
specify vectorization.

The following sections describe directive syntax and the effects of directives on Cray
Fortran compiler programs.

88 S–3901–71

Using Cray Fortran Directives [4]

4.2 Vectorization Directives
This section describes the following directives used to control vectorization:

• COPY_ASSUMED_SHAPE

• HAND_TUNED

• IVDEP

• NEXTSCALAR

• [NO]PATTERN

• PERMUTATION

• PREFERVECTOR

• PROBABILITY

• SAFE_ADDRESS

• SAFE_CONDITIONAL

• SHORTLOOP[128]

• LOOP_INFO

• LOOP_INFO PREFER_[NO]THREAD

• [NO]UNROLL

• [NO]VECTOR

• [NO]PIPELINE

The -O 0, -O scalar0, -O task0, and -O vector0 options on the ftn
command override these directives.

S–3901–71 89

Cray Fortran Reference Manual

4.2.1 Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE

The COPY_ASSUMED_SHAPE directive copies assumed-shape dummy array
arguments into contiguous local temporary storage upon entry to the procedure in
which the directive appears. During execution, it is the temporary storage that is used
when the assumed-shape dummy array argument is referenced or defined. The format
of this directive is as follows:

!DIR$ COPY_ASSUMED_SHAPE [array [, array] ...]

array The name of an array to be copied to temporary storage. If no array
names are specified, all assumed-shape dummy arrays are copied to
temporary contiguous storage upon entry to the procedure. When the
procedure is exited, the arrays in temporary storage are copied back
to the dummy argument arrays. If one or more arrays are specified,
only those arrays specified are copied. The arrays specified must
not have the TARGET attribute.

All arrays specified, or all assumed-shape dummy arrays (if specified
without array arguments), on a single COPY_ASSUMED_SHAPE
directive must be shape conformant with each other. Incorrect
code may be generated if the arrays are not. You can use the
-R c command line option to verify whether the arrays are shape
conformant.

The COPY_ASSUMED_SHAPE directive applies only to the program unit in which it
appears.

Assumed-shape dummy array arguments cannot be assumed to be stored in
contiguous storage. In the case of multidimensional arrays, the elements cannot be
assumed to be stored with uniform stride between each element of the array. These
conditions can arise, for example, when an actual array argument associated with an
assumed-shape dummy array is a non-unit strided array slice or section.

If the compiler cannot determine whether an assumed-shape dummy array is stored
contiguously or with a uniform stride between each element, some optimizations
are inhibited in order to ensure that correct code is generated. If an assumed-shape
dummy array is passed to a procedure and becomes associated with an explicit-shape
dummy array argument, additional copy-in and copy-out operations may occur
at the call site. For multidimensional assumed-shape arrays, some classes of
loop optimizations cannot be performed when an assumed-shape dummy array
is referenced or defined in a loop or an array assignment statement. The lost
optimizations and the additional copy operations performed can significantly
reduce the performance of a procedure that uses assumed-shape dummy arrays
when compared to an equivalent procedure that uses explicit-shape array dummy
arguments.

90 S–3901–71

Using Cray Fortran Directives [4]

The COPY_ASSUMED_SHAPE directive causes a single copy to occur upon entry
and again on exit. The compiler generates a test at run time to determine whether
the array is contiguous. If the array is contiguous, the array is not copied. This
directive allows the compiler to perform all the optimizations it would otherwise
perform if explicit-shape dummy arrays were used. If there is sufficient work in
the procedure using assumed-shape dummy arrays, the performance improvements
gained by the compiler outweigh the cost of the copy operations upon entry and exit
of the procedure.

4.2.2 Limit Optimizations: HAND_TUNED

This directive asserts that the code in the loop that follows the directive has been
arranged by hand for maximum performance and the compiler should restrict some
of the more aggressive automatic expression rewrites. The compiler will still fully
optimize and vectorize the loop within the constraints of the directive.

The syntax of this directive is as follows:

!DIR$ HAND_TUNED

Warning: Exercise caution when using this directive and evaluate code
performance before and after using it. The use of this directive may severely impair
performance.

4.2.3 Ignore Vector Dependencies: IVDEP

When the IVDEP directive appears before a loop, the compiler ignores vector
dependencies, including explicit dependencies, in any attempt to vectorize the loop.
IVDEP applies to the first DO loop or DO WHILE loop that follows the directive.
The directive applies to only the first loop that appears after the directive within the
same program unit.

For array operations, Fortran requires that the complete right-hand side (RHS)
expression be evaluated before the assignment to the array or array section on the
left-hand side (LHS). If possible dependencies exist between the RHS expression and
the LHS assignment target, the compiler creates temporary storage to hold the RHS
expression result. If an IVDEP directive appears before an array syntax statement, the
compiler ignores potential dependencies and suppresses the creation and use of array
temporaries for that statement. Using array syntax statements allows you to reference
referencing arrays in a compact manner. Array syntax allows you to use either the
array name, or the array name with a section subscript, to specify actions on all the
elements of an array, or array section, without using DO loops.

S–3901–71 91

Cray Fortran Reference Manual

Whether or not IVDEP is used, conditions other than vector dependencies can inhibit
vectorization. The format of this directive is as follows:

!DIR$ IVDEP [SAFEVL=vlen |
INFINITEVL]

vlen Specifies a vector length in which no dependency will occur. vlen
must be an integer between 1 and 1024 inclusive.

INFINITEVL Specifies an infinite safe vector length. That is, no dependency will
occur at any vector length.

If no vector length is specified, the vector length used is infinity.

If a loop with an IVDEP directive is enclosed within another loop with an IVDEP
directive, the IVDEP directive on the outer loop is ignored.

When the Cray Fortran compiler vectorizes a loop, it may reorder the statements
in the source code to remove vector dependencies. When IVDEP is specified,
the statements in the loop or array syntax statement are assumed to contain no
dependencies as written, and the Cray Fortran compiler does not reorder loop
statements.

4.2.4 Specify Scalar Processing: NEXTSCALAR

The NEXTSCALAR directive disables vectorization for the first DO loop or
DO WHILE loop that follows the directive. The directive applies to only one
loop, the first loop that appears after the directive within the same program unit.
NEXTSCALAR is ignored if vectorization has been disabled. The format of this
directive is as follows:

!DIR$ NEXTSCALAR

If the NEXTSCALAR directive appears prior to any array syntax statement, it disables
vectorization for the array syntax statement.

4.2.5 Request Pattern Matching: [NO]PATTERN

By default, the compiler detects coding patterns in source code sequences and
replaces these sequences with calls to optimized library routines. In most cases,
this replacement improves performance. There are cases, however, in which this
substitution degrades performance. This can occur, for example, in loops with very
low trip counts. In such a case, you can use the NOPATTERN directive to disable
pattern matching and cause the compiler to generate inline code. The formats of
these directives are as follows:

!DIR$ PATTERN

!DIR$ NOPATTERN

92 S–3901–71

Using Cray Fortran Directives [4]

When !DIR$ NOPATTERN has been encountered, pattern matching is suspended
for the remainder of the program unit or until a !DIR$ PATTERN directive is
encountered. When the -O nopattern command line option (default) is in
effect, the PATTERN and NOPATTERN compiler directives are ignored. For more
information about -O nopattern, see -O [no]pattern on page 53.

The PATTERN and NOPATTERN directives should be specified before the beginning
of a pattern.

Example: By default, the compiler would detect that the following loop is a matrix
multiply and replace it with a call to a matrix multiply library routine. By preceding
the loop with a !DIR$ NOPATTERN directive, however, pattern matching is
inhibited and no replacement is done.

!DIR$ NOPATTERN
DO k= 1,n
DO i= 1,n

DO j= 1,m
A(i,j) = A(i,j) + B(i,k) * C(k,j)

END DO
END DO

END DO

4.2.6 Declare an Array with No Repeated Values: PERMUTATION

The !DIR$ PERMUTATION directive declares that an integer array has no repeated
values. This directive is useful when the integer array is used as a subscript for
another array (vector-valued subscript). When this directive precedes a loop to be
vectorized, it may cause more efficient code to be generated.

The format for this directive is as follows:

!DIR$ PERMUTATION (ia [, ia] ...)

ia Integer array that has no repeated values for the entire routine.

When an array with a vector-valued subscript appears on the left side of the equal
sign in a loop, many-to-one assignment is possible. Many-to-one assignment occurs if
any repeated elements exist in the subscripting array. If it is known that the integer
array is used merely to permute the elements of the subscripted array, it can often be
determined that many-to-one assignment does not exist with that array reference.

Sometimes a vector-valued subscript is used as a means of indirect addressing
because the elements of interest in an array are sparsely distributed; in this case, an
integer array is used to select only the desired elements, and no repeated elements
exist in the integer array, as in the following example:

!DIR$ PERMUTATION(IPNT) ! IPNT has no repeated values
...
DO I = 1, N

A(IPNT(I)) = B(I) + C(I)
END DO

S–3901–71 93

Cray Fortran Reference Manual

4.2.7 Designate Loop Nest for Vectorization: PREFERVECTOR

For cases in which the compiler could vectorize more than one loop, the
PREFERVECTOR directive indicates that the loop following the directive should
be vectorized.

This directive can be used if there is more than one loop in the nest that could be
vectorized. The format of this directive is as follows:

!DIR$ PREFERVECTOR

In the following example, both loops can be vectorized, but the compiler generates
vector code for the outer DO I loop. Note that the DO I loop is vectorized even
though the inner DO J loop was specified with an IVDEP directive:

!DIR$ PREFERVECTOR
DO I = 1, N

!DIR$ IVDEP

DO J = 1, M
A(I) = A(I) + B(J,I)

END DO
END DO

4.2.8 Conditional Density: PROBABILITY

This directive is used to guide inlining decisions, branch elimination optimizations,
branch hint marking, and the choice of the optimal algorithmic approach to the
vectorization of conditional code. The information specified by this directive is used
by interprocedural analysis and the optimizer to produce faster code sequences.

This directive can appear anywhere executable code is legal, and the syntax of this
directive takes one of three forms.

!DIR$ PROBABILITY const
!DIR$ PROBABILITY_ALMOST_ALWAYS
!DIR$ PROBABILITY_ALMOST_NEVER

Where const is an expression between 0.0 (never) and 1.0 (always) that evaluates
to a floating point constant at compilation time.

The specified probability is a hint, rather than a statement of fact. The directive
applies to the block of code where it appears. It is important to realize that the
directive should not be applied to a conditional test directly; rather, it should be used
to indicate the relative probability of a THEN or ELSE branch being executed. For
example:

IF (A(I) > B(I)) THEN
!DIR$ PROBABILITY 0.3

A(I) = B(I)
ENDIF

94 S–3901–71

Using Cray Fortran Directives [4]

This example states that the probability of entering the block of code with the
assignment statement is 0.3, or 30%. In turn, this means that a(i) is expected to be
greater than b(i) 30% of the time as well.

For vector IF code, a probability of very low (< 0.1) or
probability_almost_never will cause the compiler to use the vector
gather/scatter methods used for sparse IF vector code instead of the vector merge
methods used for denser IF code. For example:

DO I = 1,N
IF (A(I) > 0.0) THEN

!DIR$ PROBABILITY_ALMOST_NEVER
B(I) = B(I)/A(I) + A(I)/B(I) ! EVALUATE USING SPARSE METHODS

ENDIF
ENDDO

Note that the PROBABILITY directive appears within the conditional, rather than
before the condition. This removes some of the ambiguity of tying the directive
directly to the conditional test.

4.2.9 Allow Speculative Execution of Memory References within Loops:
SAFE_ADDRESS

(Deferred implementation) The SAFE_ADDRESS directive allows you to tell
the compiler that it is safe to speculatively execute memory references within
all conditional branches of a loop. In other words, you know that these memory
references can be safely executed in each iteration of the loop.

For most code, the SAFE_ADDRESS directive can improve performance significantly
by preloading vector expressions. However, most loops do not require this directive
to have preloading performed. The directive is only required when the safety of the
operation cannot be determined or index expressions are very complicated.

The SAFE_ADDRESS directive is an advisory directive. That is, the compiler may
override the directive if it determines the directive is not beneficial.

If you do not use the directive on a loop and the compiler determines that it would
benefit from the directive, it issues a message indicating such. The message is similar
to this:

DO I = 1,N
FTN-6375 FTN_DRIVER.EXE: VECTOR X7, FILE = 10928.F, LINE = 110

A LOOP STARTING AT LINE 110 WOULD BENEFIT FROM "!DIR$ SAFE_ADDRESS".

If you use the directive on a loop and the compiler determines that it does not benefit
from the directive, it issues a message that states the directive is superfluous and
can be removed.

To see the messages you must use the -O msgs option.

S–3901–71 95

Cray Fortran Reference Manual

Incorrect use of the directive can result in segmentation faults, bus errors, or excessive
page faulting. However, it should not result in incorrect answers. Incorrect usage can
result in very severe performance degradations or program aborts.

This is the syntax of the SAFE_ADDRESS directive:

!DIR$ SAFE_ADDRESS

In the example below, the compiler will not preload vector expressions, because the
value of j is unknown. However, if you know that references to b(i,j) are safe
to evaluate for all iterations of the loop, regardless of the condition, we can use the
SAFE_ADDRESS directive for this loop as shown below:

SUBROUTINE X3(A, B, N, M, J)
REAL A(N), B(N,M)

!DIR$ SAFE_ADDRESS
DO I = 1,64 ! VECTORIZED LOOP

IF (A(I).NE.0.0) THEN
B(I,J) = 0.0 ! VALUE OF 'J' IS UNKNOWN

ENDIF
ENDDO
END

With the directive, the compiler can load b(i,j) with a full vector mask, merge
0.0 where the condition is true, and store the resulting vector using a full mask.

4.2.10 Allow Speculative Execution of Memory References and
Arithmetic Operations: SAFE_CONDITIONAL

The SAFE_CONDITIONAL directive expands upon the SAFE_ADDRESS directive.
It implies SAFE_ADDRESS and further specifies that arithmetic operations are safe,
as well as memory operations.

This directive applies to scalar and vector loop nests. It can improve performance by
allowing the hoisting of invariant expressions from conditional code and allowing
prefetching of memory references.

The SAFE_CONDITIONAL directive is an advisory directive. The compiler may
override the directive if it determines that the directive is not beneficial.

!
Caution: Incorrect use of the directive may result in segmentation faults, bus
errors, excessive page faulting, or arithmetic aborts. However, it should not result
in incorrect answers. Incorrect usage may result in severe performance degradation
or program aborts.

The syntax of this directive is as follows:

!DIR$ SAFE_CONDITIONAL

96 S–3901–71

Using Cray Fortran Directives [4]

In the example below, the compiler cannot precompute the invariant expression
s1*s2 because these values are unknown and may cause an arithmetic trap if
executed unconditionally. However, if you know that the condition is true at least
once, then it is safe to use the SAFE_CONDITIONAL directive and execute s1*s2
speculatively.

SUBROUTINE SAFE_COND(A, N, S1, S2)
REAL A(N), S1, S2

!DIR$ SAFE_CONDITIONAL
DO I = 1,N

IF (A(I) /= 0.0) THEN
A(I) = A(I) + S1*S2

ENDIF
ENDDO
END

With the directive, the compiler evaluates s1*s2 outside of the loop, rather than
under control of the conditional code. In addition, all control flow is removed from
the body of the vector loop as s1*s2 no longer poses a safety risk.

4.2.11 Designate Loops with Low Trip Counts: SHORTLOOP,
SHORTLOOP128

The SHORTLOOP and SHORTLOOP128 directives are special cases of LOOP_INFO
that have been superseded by the generalized LOOP_INFO directive. The
SHORTLOOP and SHORTLOOP128 directives are equivalent, respectively, to:

! DIR$ LOOP_INFO MIN_TRIPS(1) MAX_TRIPS(64)
! DIR$ LOOP_INFO MIN_TRIPS(1) MAX_TRIPS(128)

The meaning of SHORTLOOP and SHORTLOOP128 can be modified by using the
-eL option. If enabled, this option changes the lower bound to allow zero-trip loops.
For more information about the -eL option, see -d disable and -e enable on
page 25.

4.2.12 Provide More Information for Loops: LOOP_INFO

The LOOP_INFO directive allows additional information to be specified about the
behavior of a loop, including runtime trip count and hints on cache allocation strategy.

With respect to the trip count information, the LOOP_INFO directive is similar to the
SHORTLOOP or SHORTLOOP128 directive but provides more information to the
optimizer and can produce faster code sequences. LOOP_INFO is used immediately
before a DO or WHILE loop with a low or known trip count, to indicate the minimum,
maximum, or estimated trip count. The compiler will diagnose misuse at compile
time (when able) or under option -Rd at run time.

S–3901–71 97

Cray Fortran Reference Manual

For cache allocation hints, the LOOP_INFO directive can be used to override
default settings, CACHE, or CACHE_NT directives, or to override automatic cache
management decisions. The cache hints are local and apply only to the specified
loop nest.

The syntax of the LOOP_INFO directive is as follows:

!DIR$ LOOP_INFO [min_trips(c)] [est_trips(c)] [max_trips(c)]
[cache(symbol [, symbol ...])]
[cache_nt(symbol [, symbol ...])]
[prefetch][noprefetch]

Where:

c An expression that evaluates to an integer constant
at compilation time.

min_trips Specifies the guaranteed minimum number of trips.

est_trips Specifies the estimated or average number of trips.

max_trips Specifies the guaranteed maximum number of trips.

cache Specifies that symbol is to be allocated in cache.
This is the default if no hint is specified and the
cache_nt directive is not specified.

cache_nt Specifies that symbol is to use non-temporal reads
and writes.

symbol The base name of the object that should (cache) or
should not (cache_nt) be placed into cache. This
can be the base name of any object such as an array
or scalar structure without member references. If
you specify a pointer in the list, only the references,
not the pointer itself, are subject to the cache or
cache_nt instruction.

prefetch Specifies a preference that prefetches be performed
for the following loop.

noprefetch Specifies a preference that no prefetches be
performed for the following loop.

The prefetch and noprefetch options are deferred.

98 S–3901–71

Using Cray Fortran Directives [4]

(Deferred implementation) The prefetch clause instructs the compiler to preload
scalar data into the first-level cache to improve the frequency of cache hits and lower
latency. They are generated in situations where the compiler expects them to improve
performance. Strategic use of prefetch instructions can hide latency for scalar
loads feeding vector instructions or scalar loads in purely scalar loops. Prefetch
instructions are generated at default and higher levels of optimization. Thus, they
are turned off at -O0 or -O1. Prefetch can be turned off at the loop level via the
following directive:

!DIR$ LOOP_INFO NOPREFETCH
DO I = 1, N

4.2.13 Autothreading for Loops: LOOP_INFO PREFER_[NO]THREAD

The PREFER_THREAD and PREFER_NOTHREAD directives are special cases of
the LOOP_INFO advisory directive. Use these directives to indicate a preference
for turning threading on or off for the subsequent loop. Use the LOOP_INFO
PREFER_THREAD directive to indicate your preference that the loop following the
directive be threaded. Use the LOOP_INFO PREFER_NOTHREAD directive to
indicate that the loop should not be threaded.

The format of these directives is:

!DIR$ LOOP_INFO PREFER_THREAD
DO I = 1, N

!DIR$ LOOP_INFO PREFER_NOTHREAD
DO J = 1, N

4.2.14 Unroll Loops: [NO]UNROLL

Loop unrolling can improve program performance by revealing cross-iteration
memory optimization opportunities such as read-after-write and read-after-read. The
effects of loop unrolling also include:

• Improved loop scheduling by increasing basic block size

• Reduced loop overhead

• Improved chances for cache hits

S–3901–71 99

Cray Fortran Reference Manual

The formats of these directives are as follows:

!DIR$ UNROLL [n]

!DIR$ NOUNROLL

n Specifies the total number of loop body copies to be generated. n is
an integer value from 0 through 1024.

If you specify a value for n, the compiler unrolls the loop by that
amount. If you do not specify n, the compiler determines if it is
appropriate to unroll the loop, and if so, the unroll amount.

The subsequent DO loop is not unrolled if you specify UNROLL0,
UNROLL1, or NOUNROLL. These directives are equivalent.

The UNROLL directive should be placed immediately before the DO statement of
the loop that should be unrolled.

Note: The compiler cannot always safely unroll non-innermost loops due to data
dependencies. In these cases, the directive is ignored (see Example 1).

The UNROLL directive can be used only on loops whose iteration counts can be
calculated before entering the loop. If UNROLL is specified on a loop that is not the
innermost loop in a loop nest, the inner loops must be nested perfectly. That is, at
each nest level, there is only one loop and only the innermost loop contains work.

The NOUNROLL directive inhibits loop unrolling.

Note: Loop unrolling occurs for both vector and scalar loops automatically. It
is usually not necessary to use the unrolling directives. The UNROLL directive
should be limited to non-inner loops such as Example 1 in which unroll-and-jam
conditions can occur. Such loop unrolling is associated with compiler message
6005. Using the UNROLL directive for inner loops may be detrimental to
performance and is not recommended. Typically, loop unrolling occurs in both
vector and scalar loops without need of the UNROLL directive.

Example 1. Unrolling outer loops

Assume that the outer loop of the following nest will be unrolled by two:

!DIR$ UNROLL 2
DO I = 1, 10

DO J = 1,100
A(J,I) = B(J,I) + 1

END DO
END DO

100 S–3901–71

Using Cray Fortran Directives [4]

With outer loop unrolling, the compiler produces the following nest, in which the two
bodies of the inner loop are adjacent to each other:

DO I = 1, 10, 2
DO J = 1,100

A(J,I) = B(J,I) + 1
END DO
DO J = 1,100

A(J,I+1) = B(J,I+1) + 1
END DO

END DO

The compiler jams, or fuses, the inner two loop bodies together, producing the
following nest:

DO I = 1, 10, 2
DO J = 1,100

A(J,I) = B(J,I) + 1
A(J,I+1) = B(J,I+1) + 1

END DO
END DO

Example 2. Illegal unrolling of outer loops

Outer loop unrolling is not always legal because the transformation can change the
semantics of the original program. For example, unrolling the following loop nest
on the outer loop would change the program semantics because of the dependency
between A(...,I) and A(...,I+1):

!DIR$ UNROLL 2
DO I = 1, 10

DO J = 1,100
A(J,I) = A(J-1,I+1) + 1

END DO
END DO

Example 3. Unrolling nearest neighbor pattern

The following example shows unrolling with nearest neighbor pattern. This allows
register reuse and reduces memory references from 2 per trip to 1.5 per trip.

!DIR$ UNROLL 2
DO J = 1,N

DO I = 1,N ! VECTORIZE
A(I,J) = B(I,J) + B(I,J+1)

ENDDO
ENDDO

The preceding code fragment is converted to the following code:

DO J = 1,N,2 ! UNROLLED FOR REUSE OF B(I,J+1)
DO I = 1,N ! VECTORIZED

A(I,J) = B(I,J) + B(I,J+1)
A(I,J+1) = B(I,J+1) + B(I,J+2)

END DO
END DO

S–3901–71 101

Cray Fortran Reference Manual

4.2.15 Enable and Disable Vectorization: [NO]VECTOR

The NOVECTOR directive suppresses compiler attempts to vectorize loops and
array syntax statements. NOVECTOR takes effect at the beginning of the next loop
and applies to the rest of the program unit unless it is superseded by a VECTOR
directive. These directives are ignored if vectorization or scalar optimization have
been disabled. The formats of these directives are as follows:

!DIR$ VECTOR

!DIR$ NOVECTOR

When !DIR$ NOVECTOR has been used within the same program unit,
!DIR$ VECTOR causes the compiler to resume its attempts to vectorize loops
and array syntax statements. After a VECTOR directive is specified, automatic
vectorization is enabled for all loop nests.

The VECTOR directive affects subsequent loops. The NOVECTOR directive also
affects subsequent loops, but if it is specified within the body of a loop, it affects the
loop in which it is contained and all subsequent loops.

4.2.16 Enable or Disable, Temporarily, Soft Vector-pipelining:
[NO]PIPELINE

Software-based vector pipelining (software vector pipelining) provides additional
optimization beyond the normal hardware-based vector pipelining. In software vector
pipelining, the compiler analyzes all vector loops and will automatically attempt to
pipeline a loop if doing so can be expected to produce a significant performance gain.
This optimization also performs any necessary loop unrolling.

In some cases the compiler will either not pipeline a loop that could be pipelined, or
pipeline a loop without producing performance gains. In these cases, you can use the
PIPELINE or NOPIPELINE directives to advise the compiler to pipeline or not
pipeline the loop immediately following the directive.

The format of the pipelining directives is as follows:

!DIR$ PIPELINE

!DIR$ NOPIPELINE

Software vector pipelining is valid only for the innermost loop of a loop nest.

The PIPELINE and NOPIPELINE directives are advisory only. While you can
use the NOPIPELINE directive to inhibit automatic pipelining, and you can use the
PIPELINE directive to attempt to override the compiler's decision not to pipeline a
loop, you cannot force the compiler to pipeline a loop that cannot be pipelined.

Vector loops that have been pipelined generate compile-time messages to that effect,
if optimization messaging is enabled (-O msgs).

102 S–3901–71

Using Cray Fortran Directives [4]

4.3 Inlining Directives
The inlining directives allow you to specify whether the compiler should attempt to
inline certain subprograms or procedures. These are the inlining directives:

• [NO]CLONE, RESETCLONE

• [NO]INLINE, RESETINLINE

• INLINEALWAYS, INLINENEVER

• [NO]MODINLINE

These directives work in conjunction with the following command line options:

• -O ipan and -O ipafrom, described in -O ipan and -O
ipafrom=source[:source] ... on page 47.

• -O modinline and -O nomodinline, described in -O [no]modinline
on page 51.

The following subsections describe the inlining directives.

4.3.1 Disable or Enable Cloning for a Block of Code: [NO]CLONE and
RESETCLONE

The CLONE and NOCLONE directives control whether cloning is attempted over a
range of code. If !DIR$ CLONE is in effect, cloning is attempted at call sites.
If !DIR$ NOCLONE is in effect, cloning is not attempted at call sites. The
RESETCLONE resets cloning to the state specified on the compiler command line.

The formats of these directives are as follows:

!DIR$ CLONE
!DIR$ NOCLONE
!DIR$ RESETCLONE

One of these directives remains in effect until the opposite directive is encountered,
until the end of the program unit, or until the RESETCLONE directive is encountered.
These directives are recognized when cloning is enabled on the command line
(-O clone1). These directives are ignored if the -O ipa0 option is in effect.

S–3901–71 103

Cray Fortran Reference Manual

4.3.2 Disable or Enable Inlining for a Block of Code: [NO]INLINE and
RESETINLINE

The INLINE, NOINLINE, and RESETINLINE directives control whether inlining is
attempted over a range of code. If !DIR$ INLINE is in effect, inlining is attempted
at call sites. If !DIR$ NOINLINE is in effect, inlining is not attempted at call
sites. After either directive is used, !DIR$ RESETINLINE can be used to return
inlining to the state specified on the compiler command line. These are the formats
of these directives:

!DIR$ INLINE
!DIR$ NOINLINE
!DIR$ RESETINLINE

The INLINE and NOINLINE directives remain in effect until the opposite directive
is encountered, until the RESETINLINE directive is encountered, or until the end of
the program unit. These directives are ignored if -O ipa0 is in effect.

4.3.3 Specify Inlining for a Procedure: INLINEALWAYS and INLINENEVER

The INLINEALWAYS directive forces attempted inlining of specified procedures.
The INLINENEVER directive suppresses inlining of specified procedures. The
formats of these directives are as follows:

!DIR$ INLINEALWAYS name [, name] ...

!DIR$ INLINENEVER name [, name] ...

where name is the name of a procedure.

The following rules determine the scope of these directives:

• A !DIR$ INLINENEVER directive suppresses inlining for name. That is, if
!DIR$ INLINENEVER b appears in routine b, no call to b, within the entire
program, is inlined. If !DIR$ INLINENEVER b appears in a routine other than
b, no call to b from within that routine is inlined.

• A !DIR$ INLINEALWAYS directive specifies that inlining should always
be attempted for name. That is, if !DIR$ INLINEALWAYS c appears in
routine c, inlining is attempted for all calls to c, throughout the entire program.
If !DIR$ INLINEALWAYS c appears in a routine other than c, inlining is
attempted for all calls to c from within that routine.

An error message is issued if INLINENEVER and INLINEALWAYS are specified for
the same procedure in the same program unit.

104 S–3901–71

Using Cray Fortran Directives [4]

Example: The following file is compiled with -O ipa1:

SUBROUTINE S()
!DIR$ INLINEALWAYS S ! THIS SAYS ATTEMPT

! INLINING OF S AT ALL CALLS.
...

END SUBROUTINE

SUBROUTINE T
!DIR$ INLINENEVER S ! DO NOT INLINE ANY CALLS TO S

! IN SUBROUTINE T.
CALL S()
...
END SUBROUTINE

SUBROUTINE V

!DIR$ NOINLINE ! HAS HIGHER PRECEDENCE THAN INLINEALWAYS.
CALL S() ! DO NOT INLINE THIS CALL TO S.

!DIR$ INLINE
CALL S() ! ATTEMPT INLINING OF THIS CALL TO S.
...

END SUBROUTINE

SUBROUTINE W
CALL S() ! ATTEMPT INLINING OF THIS CALL TO S.
...

END SUBROUTINE

4.3.4 Create Inlinable Templates for Module Procedures: [NO]MODINLINE

The MODINLINE and NOMODINLINE directives enable and disable the creation of
inlinable templates for specific module procedures. The formats of these directives
are as follows:

!DIR$ MODINLINE

!DIR$ NOMODINLINE

Note: The MODINLINE and NOMODINLINE directives are ignored if
-O nomodinline is specified on the ftn command line.

These directives are in effect for the scope of the program unit in which they are
specified, including all contained procedures. If one of these directives is specified in
a contained procedure, the contained procedure's directive overrides the containing
procedure's directive.

The compiler generates a message if these directives are specified outside of a module
and ignores the directive.

To inline module procedures, the module being used associated must have been
compiled with -O modinline.

S–3901–71 105

Cray Fortran Reference Manual

Example:

MODULE BEGIN
...
CONTAINS

SUBROUTINE S() ! Uses SUBROUTINE S's !DIR$
!DIR$ NOMODINLINE

...
CONTAINS
SUBROUTINE INSIDE_S() ! Uses SUBROUTINE S's !DIR$
...
END SUBROUTINE INSIDE_S

END SUBROUTINE S
SUBROUTINE T() ! Uses MODULE BEGIN's !DIR$
...
CONTAINS
SUBROUTINE INSIDE_T() ! Uses MODULE BEGIN's !DIR$
...
END SUBROUTINE INSIDE_T
SUBROUTINE MORE_INSIDE_T

!DIR$ NOMODINLINE
...
END SUBROUTINE MORE_INSIDE_T

END SUBROUTINE T
END MODULE BEGIN

In the preceding example, the subroutines are affected as follows:

• Inlining templates are not produced for S, INSIDE_S, or MORE_INSIDE_T.

• Inlining templates are produced for T and INSIDE_T.

4.4 Scalar Optimization Directives
The following directives control aspects of scalar optimization:

• [NO]INTERCHANGE

• [NO]COLLAPSE

• NOSIDEEFFECTS

• SUPPRESS

The following subsections describe these directives.

4.4.1 Control Loop Interchange: [NO]INTERCHANGE

The loop interchange control directives specify whether or not the order of the
following two or more loops should be interchanged. These directives apply to the
loops that they immediately precede.

106 S–3901–71

Using Cray Fortran Directives [4]

The formats of these directives are as follows:

!DIR$ INTERCHANGE (do_variable1,do_variable2 [,do_variable3]...)

!DIR$ NOINTERCHANGE

do_variable

Specifies two or more do_variable names. The do_variable names
can be specified in any order, and the compiler reorders the loops.
The loops must be perfectly nested. If the loops are not perfectly
nested, you may receive unexpected results.

The compiler reorders the loops such that the loop with do_variable1 is outermost,
then loop do_variable2, then loop do_variable3.

The NOINTERCHANGE directive inhibits loop interchange on the loop that
immediately follows the directive.

Example: The following code has an INTERCHANGE directive:

!DIR$ INTERCHANGE (I,J,K)
DO K = 1,NSIZE1

DO J = 1,NSIZE1
DO I = 1,NSIZE1

X(I,J) = X(I,J) + Y(I,K) * Z(K,J)
ENDDO

ENDDO
ENDDO

The following code results when the INTERCHANGE directive is used on the
preceding code:

DO I = 1,NSIZE1
DO J = 1,NSIZE1
DO K = 1,NSIZE1

X(I,J) = X(I,J) + Y(I,K) * Z(K,J)
ENDDO

ENDDO
ENDDO

S–3901–71 107

Cray Fortran Reference Manual

4.4.2 Control Loop Collapse: [NO]COLLAPSE

The loop collapse directives control collapse of the immediately following loop nest
or elemental array syntax statement. When the COLLAPSE directive is applied to a
loop nest, the participating loops must be listed in order of increasing access stride.
NOCOLLAPSE disqualifies the immediately following loop from collapsing with
any other loop; before an elemental array syntax statement, it inhibits all collapse
in said statement.

SUBROUTINE S(A, N, N1, N2)
REAL A(N, *)

!DIR$ COLLAPSE (I, J)
DO I = 1, N1

DO J = 1, N2
A(I,J) = A(I,J) + 42.0

ENDDO
ENDDO
END

The above yields code equivalent to the following, which should not be coded directly
because as program source, it violates the Fortran language standard.

SUBROUTINE S(A, N, N1, N2)
REAL A(N, *)
DO IJ = 1, N1*N2

A(IJ, 1) = A(IJ, 1) + 42.0
ENDDO
END

With array syntax, the collapse directive appears as follows:

SUBROUTINE S(A, B)
REAL, DIMENSION(:,:) :: A, B

!DIR$ COLLAPSE
A = B ! USER PROMISES UNIFORM ACCESS STRIDE.
END

In each of the above examples, the directive enables the compiler to assume
appropriate conformity between trip counts and array extends. The compiler will
diagnose misuse at compile time (when able); or, under option -Rd, at run time.

NOCOLLAPSE prevents the compiler from collapsing a given loop with others
or from performing any loop collapse within a specified array syntax statement.
Collapse is almost always desirable, so this directive should be used sparingly.

SUBROUTINE S(A, N)
DIMENSION A(N,N)

!DIR$ NOCOLLAPSE
DO I = 1, N ! DISALLOW COLLAPSE INVOLVING I-LOOP.

DO J = 1, N
A(I,J) = 1.2

ENDDO
ENDDO
END

108 S–3901–71

Using Cray Fortran Directives [4]

Loop collapse is a special form of loop coalesce. Any perfect loop nest may be
coalesced into a single loop, with explicit rediscovery of the intermediate values of
original loop control variables. The rediscovery cost, which generally involves integer
division, is quite high. Hence, coalesce is rarely suitable for vectorization. It may be
beneficial for multithreading.

By definition, loop collapse occurs when loop coalesce may be done without the
rediscovery overhead. To meet this requirement, all memory accesses must have
uniform stride. This typically occurs when a computation can flow from one column
of a multidimensional array into the next, viewing the array as a flat sequence. Hence,
array sections such as A(:,3:7) are generally suitable for collapse, while a section like
A(1:n-1,:) lacks the needed access uniformity. Care must taken when applying the
collapse directive to assumed shape dummy arguments and Fortran pointers because
the underlying storage need not be contiguous.

4.4.3 Determine Register Storage: NOSIDEEFFECTS

The NOSIDEEFFECTS directive allows the compiler to keep information in registers
across a single call to a subprogram without reloading the information from memory
after returning from the subprogram. The directive is not needed for intrinsic
functions.

NOSIDEEFFECTS declares that a called subprogram does not redefine any variables
that meet the following conditions:

• Local to the calling program

• Passed as arguments to the subprogram

• Accessible to the calling subprogram through host association

• Declared in a common block or module

• Accessible through USE association

The format of this directive is as follows:

!DIR$ NOSIDEEFFECTS f [, f] ...

f Symbolic name of a subprogram that the user is sure has no side
effects. f must not be the name of a dummy procedure, module
procedure, or internal procedure.

A procedure declared NOSIDEEFFECTS should not define variables in a common
block or module shared by a program unit in the calling chain. All arguments
should have the INTENT(IN) attribute; that is, the procedure must not modify its
arguments. If these conditions are not met, results are unpredictable.

The NOSIDEEFFECTS directive must appear in the specification part of a program
unit and must appear before the first executable statement.

S–3901–71 109

Cray Fortran Reference Manual

The compiler may move invocations of a NOSIDEEFFECTS subprogram from
the body of a DO loop to the loop preamble if the arguments to that function are
invariant in the loop. This may affect the results of the program, particularly if the
NOSIDEEFFECTS subprogram calls functions such as the random number generator
or the real-time clock.

The effects of the NOSIDEEFFECTS directive are similar to those that can be
obtained by specifying the PURE prefix on a function or a subroutine declaration. For
more information about the PURE prefix, refer to the Fortran Standard.

4.4.4 Suppress Scalar Optimization: SUPPRESS

The SUPPRESS directive suppresses scalar optimization for all variables or only
for those specified at the point where the directive appears. This often prevents or
adversely affects vectorization of any loop that contains SUPPRESS. The format
of this directive is as follows:

!DIR$ SUPPRESS [var [, var] ...]

var Variable that is to be stored to memory. If no variables are listed, all
variables in the program unit are stored. If more than one variable is
specified, use a comma to separate vars.

At the point at which !DIR$ SUPPRESS appears in the source code, variables in
registers are stored to memory (to be read out at their next reference), and expressions
containing any of the affected variables are recomputed at their next reference
after !DIR$ SUPPRESS. The effect on optimization is equivalent to that of an
external subroutine call with an argument list that includes the variables specified by
!DIR$ SUPPRESS (or, if no variable list is included, all variables in the program
unit).

SUPPRESS takes effect only if it is on an execution path. Optimization proceeds
normally if the directive path is not executed because of a GOTO or IF.

Example:

SUBROUTINE SUB (L)
LOGICAL L
A = 1.0 ! A is local
IF (L) THEN

!DIR$ SUPPRESS ! Has no effect if L is false
CALL ROUTINE()

ELSE
PRINT *, A

END IF
END

110 S–3901–71

Using Cray Fortran Directives [4]

In this example, optimization replaces the reference to A in the PRINT statement
with the constant 1.0, even though !DIR$ SUPPRESS appears between A=1.0
and the PRINT statement. The IF statement can cause the execution path to bypass
!DIR$ SUPPRESS. If SUPPRESS appears before the IF statement, A in PRINT *
is not replaced by the constant 1.0.

4.5 Local Use of Compiler Features
The following directives provide local control over specific compiler features.

• [NO]BOUNDS

• FREE and FIXED

The -f and -R command line options apply to an entire compilation, but these
directives override any command line specifications for source form or bounds
checking. The following subsections describe these directives.

4.5.1 Check Array Bounds: [NO]BOUNDS

Array bounds checking provides a check of most array references at both compile
time and run time to ensure that each subscript is within the array's declared size.

Note: Bounds checking behavior differs with the optimization level. Complete
checking is guaranteed only when optimization is turned off by specifying -O 0
on the ftn command line.

The -R command line option controls bounds checking for a whole compilation. The
BOUNDS and NOBOUNDS directives toggle the feature on and off within a program
unit. Either directive can specify particular arrays or can apply to all arrays. The
formats of these directives are as follows:

!DIR$ BOUNDS [array [, array] ...]

!DIR$ NOBOUNDS [array [, array] ...]

array The name of an array. The name cannot be a subobject of a derived
type. When no array name is specified, the directive applies to all
arrays.

BOUNDS remains in effect for a given array until the appearance of a NOBOUNDS
directive that applies to that array, or until the end of the program unit. Bounds
checking can be enabled and disabled many times in a single program unit.

Note: To be effective, these directives must follow the declarations for all
affected arrays. It is suggested that they be placed at the end of a program unit's
specification statements unless they are meant to control particular ranges of code.

S–3901–71 111

Cray Fortran Reference Manual

The bounds checking feature detects any reference to an array element whose
subscript exceeds the array's declared size. For example:

REAL A(10)
C DETECTED AT COMPILE TIME:

A(11) = X
C DETECTED AT RUN TIME IF IFUN(M) EXCEEDS 10:

A(IFUN(M)) = W

The compiler generates an error message when it detects an out-of-bounds subscript.
If the compiler cannot detect the out-of-bounds subscript (for example, if the
subscript includes a function reference), a message is issued for out-of-bound
subscripts when your program runs, but the program is allowed to complete
execution.

Bounds checking does not inhibit vectorization but typically increases program run
time. If an array's last dimension declarator is *, checking is not performed on the
last dimension's upper bound. Arrays in formatted WRITE and READ statements are
not checked.

Note: Array bounds checking does not prevent operand range errors that result
when operand prefetching attempts to access an invalid address outside an array.
Bounds checking is needed when very large values are used to calculate addresses
for memory references.

If bounds checking detects an out-of-bounds array reference, a message is issued for
only the first out-of-bounds array reference in the loop. For example:

DIMENSION A(10)
MAX = 20
A(MAX) = 2
DO 10 I = 1, MAX

A(I) = I
10 CONTINUE

CALL TWO(MAX,A)
END
SUBROUTINE TWO(MAX,A)
REAL A(*) ! NO UPPER BOUNDS CHECKING DONE
END

The following messages are issued for the preceding program:

lib-1961 a.out: WARNING
Subscript 20 is out of range for dimension 1 for array
'A' at line 3 in file 't.f' with bounds 1:10.

lib-1962 a.out: WARNING
Subscript 1:20:1 is out of range for dimension 1 for array
'A' at line 5 in file 't.f' with bounds 1:10.

112 S–3901–71

Using Cray Fortran Directives [4]

4.5.2 Specify Source Form: FREE and FIXED

The FREE and FIXED directives specify whether the source code in the program
unit is written in free source form or fixed source form. The FREE and FIXED
directives override the -f option, if specified, on the command line. The formats of
these directives are as follows:

!DIR$ FREE

!DIR$ FIXED

These directives apply to the source file in which they appear, and they allow you to
switch source forms within a source file.

You can change source form within an INCLUDE file. After the INCLUDE file has
been processed, the source form reverts back to the source form that was being used
prior to processing of the INCLUDE file.

4.6 Storage Directives
The following directives specify aspects of storing common blocks, variables, or
arrays:

• BLOCKABLE

• BLOCKINGSIZE and NOBLOCKING

• STACK

The following sections describe these directives.

4.6.1 Permit Cache Blocking: BLOCKABLE Directive

The BLOCKABLE directive specifies that it is legal to cache block the subsequent
loops.

The format of this directive is as follows:

!DIR$ BLOCKABLE (do_variable,do_variable [,do_variable]...)

where do_variable specifies the do_variable names of two or more loops. The loops
identified by the do_variable names must be adjacent and nested within each other,
although they need not be perfectly nested.

This directive tells the compiler that these loops can be involved in a blocking
situation with each other, even if the compiler would consider such a transformation
illegal. The loops must also be interchangeable and unrollable. This directive does
not instruct the compiler on which of these transformations to apply.

S–3901–71 113

Cray Fortran Reference Manual

4.6.2 Declare Cache Blocking: BLOCKINGSIZE and NOBLOCKING
Directives

The BLOCKINGSIZE and NOBLOCKING directives assert that the loop following
the directive either is (or is not) involved in a cache blocking for the primary or
secondary cache.

The formats of these directives are as follows:

!DIR$ BLOCKINGSIZE(n1[,n2])

!DIR$ NOBLOCKING

n1,n2 An integer number that indicates the block size. If the loop is
involved in a blocking, it will have a block size of n1 for the primary
cache and n2 for the secondary cache. The compiler attempts to
include this loop within such a block, but it cannot guarantee this.

For n1, specify a value such that n1 .GE. 0. For n2, specify a value
such that n2 .LE. 230.

If n1 or n2 are 0, the loop is not blocked, but the entire loop is inside
the block.

Example:

SUBROUTINE AMAT(X,Y,Z,N,M,MM)
REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)
DO K = 1, N

!DIR$ BLOCKABLE(J,I)
!DIR$ BLOCKING SIZE (20)

DO J = 1, M
!DIR$ BLOCKING SIZE (20)

DO I = 1, MM
Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)

END DO
END DO

END DO
END

114 S–3901–71

Using Cray Fortran Directives [4]

For the preceding code, the compiler makes 20 x 20 blocks when blocking, but it
could block the loop nest such that loop K is not included in the tile. If it did not,
add a BLOCKINGSIZE(0) directive just before loop K to specify that the compiler
should generate a loop such as the following:

SUBROUTINE AMAT(X,Y,Z,N,M,MM)
REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)
DO JJ = 1, M, 20

DO II = 1, MM, 20
DO K = 1, N

DO J = JJ, MIN(M, JJ+19)
DO I = II, MIN(MM, II+19)

Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)
END DO

END DO
END DO

END DO
END DO
END

Note that an INTERCHANGE directive can be applied to the same loop nest as a
BLOCKINGSIZE directive. The BLOCKINGSIZE directive applies to the loop it
directly precedes; it moves with that loop when an interchange is applied.

The NOBLOCKING directive prevents the compiler from involving the subsequent
loop in a cache blocking situation.

4.6.3 Request Stack Storage: STACK

The STACK directive causes storage to be allocated to the stack in the program unit
that contains the directive. This directive overrides the -ev command line option in
specific program units of a compilation unit. For more information about the -ev
command line option, see -d disable and -e enable on page 25.

The format of this directive is as follows:

!DIR$ STACK

Data specified in the specification part of a module or in a DATA statement is always
allocated to static storage. This directive has no effect on this static storage allocation.

All SAVE statements are honored in program units that also contain a STACK
directive. This directive does not override the SAVE statement.

If the compiler finds a STACK directive and a SAVE statement without any objects
specified in the same program unit, a warning message is issued.

S–3901–71 115

Cray Fortran Reference Manual

The following rules apply when using this directive:

• It must be specified within the scope of a program unit.

• If it is specified in the specification part of a module, a message is issued. The
STACK directive is allowed in the scope of a module procedure.

• If it is specified within the scope of an interface body, a message is issued.

4.7 Miscellaneous Directives
The following directives allow you to use several different compiler features:

• [NO]AUTOTHREAD

• CACHE

• CACHE_NT

• CONCURRENT

• [NO]FUSION

• ID

• IGNORE_TKR

• NAME

• PREPROCESS

• WEAK

4.7.1 Control Autothreading: [NO]AUTOTHREAD

The AUTOTHREAD and NOAUTOTHREAD directives turn autothreading on and off
for selected blocks of code. These directives are ignored if the -h thread0 or
-O thread0 options are used.

The formats of these directives are as follows:

!DIR$ AUTOTHREAD

!DIR$ NOAUTOTHREAD

The PREFER_THREAD and PREFER_NOTHREAD advisory directives can be
used to indicate a preference for threading in the loop immediately following
the advisory directive. The NOAUTOTHREAD directive takes precedence over
PREFER_THREAD. For more information, see Autothreading for Loops:
LOOP_INFO PREFER_[NO]THREAD on page 99.

116 S–3901–71

Using Cray Fortran Directives [4]

4.7.2 Allocate Cache: CACHE

The CACHE directive is an advisory directive that asserts that all memory operations
with the specified symbols as the base are to be allocated in cache. Use this directive
to identify objects that should be placed in cache.

Advisory directives are directives the compiler honors if conditions permit. When
this directive is used, code performance may be improved because objects with high
cache reuse rates are retained in cache.

To use the CACHE directive, place it only in the specification part, before any
executable statement. The format of the CACHE directive is:

!DIR$ CACHE base_name[, base_name]

Where base_name is the object that should be placed into cache. This can be the base
name of any object such as an array, scalar structure, and so on, without member
references. If you specify a pointer in the list, only the references and not the pointer
itself are cached.

The CACHE directive overrides the automatic cache management level that was
specified using the -O cachen option on the compiler command line. This directive
may be overridden locally by use of the LOOP_INFO directive.

4.7.3 Non-temporal Reads and Writes: CACHE_NT

The CACHE_NT directive is an advisory directive that specifies objects that should
use non-temporal reads and writes. Use this directive to identify objects that should
not be placed in cache.

Advisory directives are directives the compiler honors if conditions permit. When
this directive is used, code performance may be improved because objects with low
cache reuse rates are kept out of cache, thus making room for objects with higher
cache reuse rates.

To use the CACHE_NT directive, place it only in the specification part, before any
executable statement. The format of the CACHE_NT directive is:

!DIR$ CACHE_NT base_name[, base_name]

Where base_name is the object that should use non-temporal reads and writes. This
can be the base name of any object such as an array, scalar structure, and so on,
without member references. If you specify a pointer in the list, only the references
and not the pointer itself have the cache non-temporal property.

The CACHE_NT directive overrides the automatic cache management level that was
specified using the -O cachen option on the compiler command line. This directive
may be overridden locally by use of the LOOP_INFO directive.

S–3901–71 117

Cray Fortran Reference Manual

4.7.4 Specify Array Dependencies: CONCURRENT

The CONCURRENT directive conveys array dependency information to the compiler.
This directive affects the loop that immediately follows it. The CONCURRENT
directive is useful when vectorization is specified by the command line. The format
of this directive is as follows:

!DIR$ CONCURRENT [SAFE_DISTANCE=n]

n An integer number that represents the number of additional
consecutive loop iterations that can be executed in parallel without
danger of data conflict. n must be an integeral constant > 0.

If SAFE_DISTANCE=n is not specified, the distance is assumed
to be infinite, and the compiler ignores all cross-iteration data
dependencies.

The CONCURRENT directive is ignored if the SAFE_DISTANCE
argument is used and vectorization is requested on the command line.

Example. Consider the following code:

!DIR$ CONCURRENT SAFE_DISTANCE=3
DO I = K+1, N

X(I) = A(I) + X(I-K)
ENDDO

The CONCURRENT directive in this example informs the optimizer that the
relationship K > 3 is true. This allows the compiler to load all of the following array
references safely during the Ith loop iteration:

X(I-K)
X(I-K+1)
X(I-K+2)
X(I-K+3)

4.7.5 Fuse Loops: [NO]FUSION

The FUSION and NOFUSION directives allow you to fine-tune the selection of which
DO loops the compiler should attempt to fuse. If there are only a few loops out of
many that you want to fuse, then use the FUSION directive with the -O fusion1
option to confine loop fusion to these few loops. If there are only a few loops out
of many that you do not want to fuse, use the NOFUSION directive with the -O
fusion2 option to specify no fusion for these loops.

These are the formats of the directives:

!DIR$ FUSION

!DIR NOFUSION

The FUSION directive should be placed immediately before the DO statement of
the loop that should be fused.

118 S–3901–71

Using Cray Fortran Directives [4]

4.7.6 Create Identification String: ID

The ID directive inserts a character string into the file.o produced for a Fortran
source file. The format of this directive is as follows:

!DIR$ ID "character_string"

character_ string

The character string to be inserted into file.o. The syntax box shows
quotation marks as the character_string delimiter, but you can use
either apostrophes (' ') or quotation marks (" ").

The character_string can be obtained from file.o in one of the following ways:

• Method 1 — Using the what command. To use the what command to retrieve
the character string, begin the character string with the characters @(#). For
example, assume that id.f contains the following source code:

!DIR$ ID '@(#)file.f 03 February 1999'
PRINT *, 'Hello, world'
END

The next step is to use file id.o as the argument to the what command, as
follows:

% what id.o
% id.o:
% file.f 03 February 1999

Note that what does not include the special sentinel characters in the output.

In the following example, character_string does not begin with the characters
@(#). The output shows that what does not recognize the string.

Input file id2.o contains the following:

!DIR$ ID 'file.f 03 February 1999'
PRINT *, 'Hello, world'
END

The what command generates the following output:

% what id2.o
% id2.o:

S–3901–71 119

Cray Fortran Reference Manual

• Method 2 — Using strings or od. The following example shows how to
obtain output using the strings command.

Input file id.f contains the following:

!DIR$ ID "File: id.f Date: 03 February 1999"
PRINT *, 'Hello, world'
END

The strings command generates the following output:

% strings id.o
02/03/9913:55:52f90
3.3cn
$MAIN
@CODE
@DATA
@WHAT
$MAIN
$STKOFEN
f$init
_FWF
$END
*?$F(6(
Hello, world
$MAIN
File: id.f Date: 03 February 1999
% od -tc id.o
... portion of dump deleted
0000000001600 \0 \0 \0 \0 \0 \0 \0 \n F i l e : i d
0000000001620 . f D a t e : 0 3 F e b
0000000001640 r u a r y 1 9 9 9 \0 \0 \0 \0 \0 \0
... portion of dump deleted

4.7.7 Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR

The IGNORE_TKR directive directs the compiler to ignore the type, kind, and/or rank
(TKR) of specified dummy arguments in a procedure interface.

The format for this directive is as follows:

!DIR$ IGNORE_TKR [[(letter) dummy_arg] ...]

letter The letter can be T, K, or R, or any combination of these letters (for
example, TK or KR). The letter applies only to the dummy argument
it precedes. If letter appears, dummy_arg must appear.

dummy_arg If specified, it indicates the dummy arguments for which TKR rules
should be ignored.

If not specified, TKR rules are ignored for all dummy arguments in
the procedure that contains the directive.

The directive causes the compiler to ignore the type, kind, and/or rank of the specified
dummy arguments when resolving a generic call to a specific call. The compiler also
ignores the type, kind, and/or rank on the specified dummy arguments when checking
all the specifics in a generic call for ambiguities.

120 S–3901–71

Using Cray Fortran Directives [4]

Example: The following directive instructs the compiler to ignore type, kind, and/or
rank rules for the dummy arguments of the following subroutine fragment:

subroutine example(A,B,C,D)
!DIR$ IGNORE_TKR A, (R) B, (TK) C, (K) D

Table 8 indicates what is ignored for each dummy argument.

Table 8. Explanation of Ignored TKRs

Dummy Argument Ignored

A Type, kind and rank is ignored

B Only rank is ignored

C Type and kind is ignored

D Only kind is ignored

4.7.8 External Name Mapping: NAME

The NAME directive allows you to specify a case-sensitive external name, or a name
that contains characters outside of the Fortran character set, in a Fortran program. The
case-sensitive external name is specified on the NAME directive, in the following
format:

!DIR$ NAME (fortran_name="external_name"
[, fortran_name="external_name"] ...)

fortran_name

The name used for the object throughout the Fortran program.

external_name

The external form of the name.

Rules for Fortran naming do not apply to the external_name string; any character
sequence is valid. You can use this directive, for example, when writing calls to C
routines.

Example:

PROGRAM MAIN
!DIR$ NAME (FOO="XyZ")

CALL FOO ! XyZ is really being called
END PROGRAM

Note: The Fortran standard BIND feature provides some of the capability of the
NAME directive.

S–3901–71 121

Cray Fortran Reference Manual

4.7.9 Preprocess Include File: PREPROCESS

The PREPROCESS directive allows an include file to be preprocessed when the
compilation does not specify the preprocessing command line option. This directive
does not cause preprocessing of included files, unless they too use the directive. If
the preprocessing command line option is used, preprocessing occurs normally for
all files.

To use the directive, it must be the first line in the include file and in each included
file that needs to be preprocessing.

This is the format of the PREPROCESS directive:

!DIR$ PREPROCESS [expand_macros]

The optional expand_macros clause allows the compiler to expand all macros
within the include files. Without this clause, macro expansion occurs only within
preprocessing directives.

4.7.10 Specify Weak Procedure Reference: WEAK

Sometimes, the code path of a program never executes at run time because of some
condition. If this code path references a procedure that is external to the program (for
example, a library procedure), the linker will add the binary for the procedure to the
compiled program, resulting in a larger program. The WEAK directive can prevent
the compiler driver from adding the binary to your program, resulting in a smaller
program and less use of memory.

The WEAK directive is used with procedures and variables to declare weak objects.
The use of a weak object is referred to as a weak reference. The existence of a weak
reference does not cause the compiler driver to add the appropriate binaries into a
compiled program, so executing a weak reference will cause the program to fail. The
compiler support for determining if the binary of a weak object is loaded is deferred.
To cause the compiler driver to add the binaries so the weak reference will work, you
must have a strong reference (a normal reference) somewhere in the program.

The following example illustrates the reason the WEAK directive is used. The startup
code, which is compiled into every Fortran program, calls the SHMEM initialization
routine, which causes the linker to add the binary of the initialization routine to
every compiled program if a strong reference to the routine is used. This binary is
unnecessary if a program does not use SHMEM. To avoid linking unnecessary code,
the startup code uses the WEAK directive for the initialization routine. In this manner,
if the program does not use SHMEM, the linker does not add the binary of the
initialization routine even though the startup code calls it. However, if the program
calls the SHMEM routines using strong references, the linker adds the necessary
binaries, including the initialization binary into the compiled program.

122 S–3901–71

Using Cray Fortran Directives [4]

The WEAK directive has two forms:

!DIR$ WEAK procedure_name [, procedure_name] ...

!DIR$ WEAK procedure_name = stub_name[, procedure_name1 = stub_name1] ...

The first form allows you to specify one or more weak objects. This form
requires you to implement code that senses that the procedure_name procedure is
loaded before calling it. The second form allows you to point a weak reference
(procedure_name) to a stub procedure that exists in your code. This allows you to call
the stub if a strong reference to procedure_name does not exist. If a strong reference
to procedure_name exists, it is called instead of the stub. The stub_name procedure
must have the same name and dummy argument list as procedure_name.

Note: The linker does not issue an unresolved reference error message for weak
procedure references.

S–3901–71 123

Cray Fortran Reference Manual

124 S–3901–71

Source Preprocessing [5]

Source preprocessing can help you port a program from one platform to another by
allowing you to specify source text that is platform specific.

For a source file to be preprocessed automatically, it must have an uppercase
extension, either .F (for a file in fixed source form), or .F90 or .FTN (for a file in
free source form). To specify preprocessing of source files with other extensions,
including lowercase ones, use the -eP or -eZ options described in Command Line
Options on page 133.

5.1 General Rules
You can alter the source code through source preprocessing directives. These
directives are fully explained in Directives on page 126. The directives must be used
according to the following rules:

• Do not use source preprocessor (#) directives within multiline compiler directives
(CDIR$, !DIR$, CSD$, !CSD$, C$OMP, or !$OMP).

• You cannot include a source file that contains an #if directive without a
balancing #endif directive within the same file.

The #if directive includes the #ifdef and #ifndef directives.

• If a directive is too long for one source line, the backslash character (\) is used to
continue the directive on successive lines. Successive lines of the directive can
begin in any column.

The backslash character (\) can appear in any location within a directive in which
white space can occur. A backslash character (\) in a comment is treated as a
comment character. It is not recognized as signaling continuation.

• Every directive begins with the pound character (#), and the pound character (#)
must be in column 1.

• Blank and tab (HT) characters can appear between the pound character (#) and
the directive keyword.

• You cannot write form feed (FF) or vertical tab (VT) characters to separate tokens
on a directive line. That is, a source preprocessing line must be continued, by
using a backslash character (\), if it spans source lines.

S–3901–71 125

Cray Fortran Reference Manual

• Blanks are significant, so the use of spaces within a source preprocessing directive
is independent of the source form of the file. The fields of a source preprocessing
directive must be separated by blank or tab (HT) characters.

• Any user-specified identifier that is used in a directive must follow Fortran rules
for identifier formation. The exceptions to this rule are as follows:

– The first character in a source preprocessing name (a macro name) can be
an underscore character (_).

– Source preprocessing names are significant in their first 132 characters
whereas a typical Fortran identifier is significant only in its first 63 characters.

• Source preprocessing identifier names are case sensitive.

• Numeric literal constants must be integer literal constants or real literal constants,
as defined for Fortran.

• Comments written in the style of the C language, beginning with /* and ending
with */, can appear anywhere within a source preprocessing directive in which
blanks or tabs can appear. The comment, however, must begin and end on a
single source line.

• Directive syntax allows an identifier to contain the ! character. Therefore, placing
the ! character to start a Fortran comment on the same line as the directive should
be avoided.

5.2 Directives
The blanks shown in the syntax descriptions of the source preprocessing directives are
significant. The tab character (HT) can be used in place of a blank. Multiple blanks
can appear wherever a single blank appears in a syntax description.

5.2.1 #include Directive

The #include directive directs the system to use the content of a file. Just as with
the INCLUDE line path processing defined by the Fortran standard, an #include
directive effectively replaces that directive line by the content of filename. This
directive has the following formats:

#include "filename"

#include <filename>

126 S–3901–71

Source Preprocessing [5]

filename A file or directory to be used.

In the first form, if filename does not begin with a slash (/) character,
the system searches for the named file, first in the directory of the
file containing the #include directive, then in the sequence of
directories specified by the -I option(s) on the ftn command line,
and then the standard (default) sequence. If filename begins with a
slash (/) character, it is used as is and is assumed to be the full path
to the file.

The second form directs the search to begin in the sequence of
directories specified by the -I option(s) on the ftn command line
and then search the standard (default) sequence.

The Fortran standard prohibits recursion in INCLUDE files, so recursion is also
prohibited in the #include form.

The #include directives can be nested.

When the compiler is invoked to do only source preprocessing, not compilation, text
will be included by #include directives but not by Fortran INCLUDE lines. For
information about the source preprocessing command line options, see Command
Line Options on page 133.

5.2.2 #define Directive

The #define directive lets you declare a variable and assign a value to the variable.
It also allows you to define a function-like macro. This directive has the following
format:

#define identifier value

#define identifier(dummy_arg_list) value

The first format defines an object-like macro (also called a source preprocessing
variable), and the second defines a function-like macro. In the second format, the left
parenthesis that begins the dummy_arg_list must immediately follow the identifier,
with no intervening white space.

identifier The name of the variable or macro being defined.

Rules for Fortran variable names apply; that is, the name cannot have
a leading underscore character (_). For example, ORIG is a valid
name, but _ORIG is invalid.

dummy_arg_list

A list of dummy argument identifiers.

value The value is a sequence of tokens. The value can be continued onto
more than one line using backslash (\) characters.

S–3901–71 127

Cray Fortran Reference Manual

If a preprocessor identifier appears in a subsequent #define directive without
being the subject of an intervening #undef directive, and the value in the second
#define directive is different from the value in the first #define directive,
then the preprocessor issues a warning message about the redefinition. The second
directive's value is used. For more information about the #undef directive, see
#undef Directive on page 128.

When an object-like macro's identifier is encountered as a token in the source file,
it is replaced with the value specified in the macro's definition. This is referred to
as an invocation of the macro.

The invocation of a function-like macro is more complicated. It consists of the
macro's identifier, immediately followed by a left parenthesis with no intervening
white space, then a list of actual arguments separated by commas, and finally a
terminating right parenthesis. There must be the same number of actual arguments in
the invocation as there are dummy arguments in the #define directive. Each actual
argument must be balanced in terms of any internal parentheses. The invocation is
replaced with the value given in the macro's definition, with each occurrence of any
dummy argument in the definition replaced with the corresponding actual argument
in the invocation.

For example, the following program prints Hello, world. when compiled with
the -F option and then run:

PROGRAM P
#define GREETING 'Hello, world.'

PRINT *, GREETING
END PROGRAM P

The following program prints Hello, Hello, world. when compiled with the
-F option and then run:

PROGRAM P
#define GREETING(str1, str2) str1, str1, str2

PRINT *, GREETING('Hello, ', 'world.')
END PROGRAM P

5.2.3 #undef Directive

The #undef directive sets the definition state of identifier to an undefined value. If
identifier is not currently defined, the #undef directive has no effect. This directive
has the following format:

#undef identifier

identifier The name of the variable or macro being undefined.

128 S–3901–71

Source Preprocessing [5]

5.2.4 # (Null) Directive

The null directive simply consists of the pound character (#) in column 1 with no
significant characters following it. That is, the remainder of the line is typically blank
or is a source preprocessing comment. This directive is generally used for spacing
out other directive lines.

5.2.5 Conditional Directives

Conditional directives cause lines of code to either be produced by the source
preprocessor or to be skipped. The conditional directives within a source file form
if-groups. An if-group begins with an #if, #ifdef, or #ifndef directive,
followed by lines of source code that you may or may not want skipped. Several
similarities exist between the Fortran IF construct and if-groups:

• The #elif directive corresponds to the ELSE IF statement.

• The #else directive corresponds to the ELSE statement.

• Just as an IF construct must be terminated with an END IF statement, an
if-group must be terminated with an #endif directive.

• Just as with an IF construct, any of the blocks of source statements in an if-group
can be empty.

For example, you can write the following directives:

#if MIN_VALUE == 1
#else

...
#endif

Determining which group of source lines (if any) to compile in an if-group is
essentially the same as the Fortran determination of which block of an IF construct
should be executed.

S–3901–71 129

Cray Fortran Reference Manual

5.2.5.1 #if Directive

The #if directive has the following format:

#if expression

expression An expression. The values in expression must be integer literal
constants or previously defined preprocessor variables. The
expression is an integer constant expression as defined by the
C language standard. All the operators in the expression are C
operators, not Fortran operators. The expression is evaluated
according to C language rules, not Fortran expression evaluation
rules.

Note that unlike the Fortran IF construct and IF statement logical
expressions, expression in an #if directive need not be enclosed
in parentheses.

The #if expression can also contain the unary defined operator, which can be
used in either of the following formats:

defined identifier

defined(identifier)

When the defined subexpression is evaluated, the value is 1 if identifier is
currently defined, and 0 if it is not.

All currently defined source preprocessing variables in expression, except those that
are operands of defined unary operators, are replaced with their values. During this
evaluation, all source preprocessing variables that are undefined evaluate to 0.

Note that the following two directive forms are not equivalent:

• #if X

• #if defined(X)

In the first case, the condition is true if X has a nonzero value. In the second case, the
condition is true only if X has been defined (has been given a value that could be 0).

5.2.5.2 #ifdef Directive

The #ifdef directive is used to determine if identifier is predefined by the source
preprocessor, has been named in a #define directive, or has been named in a
ftn -D command line option. For more information about the -D option, see
Command Line Options on page 133. This directive has the following format:

#ifdef identifier

130 S–3901–71

Source Preprocessing [5]

The #ifdef directive is equivalent to either of the following two directives:

• #if defined identifier

• #if defined(identifier)

5.2.5.3 #ifndef Directive

The #ifndef directive tests for the presence of an identifier that is not defined.
This directive has the following format:

#ifndef identifier

This directive is equivalent to either of the following two directives:

• #if ! defined identifier

• #if ! defined(identifier)

5.2.5.4 #elif Directive

The #elif directive serves the same purpose in an if-group as does the ELSE IF
statement of a Fortran IF construct. This directive has the following format:

#elif expression

expression The expression follows all the rules of the integer constant expression
in an #if directive.

5.2.5.5 #else Directive

The #else directive serves the same purpose in an if-group as does the ELSE
statement of a Fortran IF construct. This directive has the following format:

#else

5.2.5.6 #endif Directive

The #endif directive serves the same purpose in an if-group as does the END IF
statement of a Fortran IF construct. This directive has the following format:

#endif

S–3901–71 131

Cray Fortran Reference Manual

5.3 Predefined Macros
The Cray Fortran compiler source preprocessing supports a number of predefined
macros. They are divided into groups as follows:

• Macros based on the host machine

• Macros based on CLE system targets

• Macros based on the Cray Fortran compiler

• Macros based on the source file

The following predefined macros are based on the host system (the system upon
which the compilation is being done):

unix, __unix, __unix__

Always defined. (The leading characters in the second form consist
of 2 consecutive underscores; the third form consists of 2 leading
and 2 trailing underscores.)

The following predefined macros are based on CLE systems as targets:

_ADDR64

Defined for CLE systems as targets. The target system must have
64-bit address registers.

_OPENMP

Defined as the publication date of the OpenMP standard supported,
as a string of the form yyyymm.

_MAXVL_8

Defined as 16, the number of 8-bit elements that fit in an XMM
register ("vector length").

_MAXVL_16

Defined as 8.

_MAXVL_32

Defined as 4.

_MAXVL_64

Defined as 2.

_MAXVL_128

Defined as 0.

132 S–3901–71

Source Preprocessing [5]

The following macro is based on the Cray Fortran compiler:

_CRAYFTN

Defined as 1.

The following predefined macros are based on the source file:

__line__, __LINE__

Defined to be the line number of the current source line in the source
file.

__file__, __FILE__

Defined to be the name of the current source file.

__date__, __DATE__

Defined to be the current date in the form mm/dd/yy.

__time__, __TIME__

Defined to be the current in the form hh:mm:ss.

5.4 Command Line Options
The following ftn command line options affect source preprocessing.

• The -D identifier[=value] option, which defines variables used for source
preprocessing. For more information about this option, see -D identifier
[=value] on page 32.

• The -eP option, which performs source preprocessing on file.f[90],
file.F[90], file.ftn, or file.FTN but does not compile. The -eP option
produces file.i. For more information about this option, see -d disable and
-e enable on page 25.

• The -eZ option, which performs source preprocessing and compilation on
file.f[90], file.F[90], file.ftn, or file.FTN. The -eZ option produces
file.i. For more information about this option, see -d disable and -e enable
on page 25.

• The -F option, which enables macro expansion throughout the source file. For
more information about this option, see -F on page 32.

• The -U identifier [, identifier] ... option, which undefines variables used for
source preprocessing. For more information about this option, see -U identifier
[,identifier] ... on page 70.

S–3901–71 133

Cray Fortran Reference Manual

The -D identifier [=value], -F, and -U identifier [, identifier] ... options
are ignored unless one of the following is true:

• The Fortran input source file is specified as either file.F, file.F90, or file.FTN.

• The -eP or -eZ options have been specified.

134 S–3901–71

Using the OpenMP Fortran API [6]

OpenMP is a parallel programming model that is portable across shared memory
architectures from Cray and other vendors. The Cray Fortran compiler supports
the OpenMP Application Program Interface, Version 3.0 standard. All OpenMP
library procedures and directives, except for limitations in a few directive clauses,
are supported.

All OpenMP directives and library procedures are documented
by the OpenMP Fortran specification which is accessible at
http://openmp.org/wp/openmp-specifications/.

6.1 Limitations
The following known limitations affect OpenMP on Cray systems.

• Orphaned task constructs may have an implicit taskwait directive added to
the end of the routine. This is not required by the specification but is currently
required by the Cray implementation. This limits the amount of parallelism that
may be seen. This limitation will be removed in a future release.

• Task switching is not implemented. The thread that starts executing a task will be
the thread that finishes the task. Task switching will be implemented in a future
release.

• The collapse clause is accepted but is not implemented in the compiler. This
limitation will be removed in a future release.

• The workshare constructs are only partially optimized. The current
implementation workshares parallel work it discovers inside the workshare
construct. However, there may be more synchronization than strictly required at
this time. This limitation will be addressed in a future release.

S–3901–71 135

http://www.openmp.org/specs/

Cray Fortran Reference Manual

6.2 Differences
The following are Cray-specific behaviors in areas that are defined as
implementation-dependent by the OpenMP specification.

• Parallel region constructs:

– If a parallel region is encountered while dynamic adjustment of the number
of threads is disabled, and the number of threads specified for the parallel
region exceeds the number that the runtime system can supply, the program
terminates.

– The number of physical processors actually hosting the threads at any given
time is fixed at program startup and is specified by the aprun -d depth
option.

• DO and PARALLEL DO directives:

– SCHEDULE(GUIDED,chunk)—The size of the initial chunk for the master
thread and other team members is approximately equal to the trip count
divided by the number of threads.

– SCHEDULE(RUNTIME)—The schedule type and chunk size can be chosen
at run time by setting the OMP_SCHEDULE environment variable. If this
environment variable is not set, the schedule type and chunk size default to
STATIC and 0, respectively.

– Default schedule—In the absence of the SCHEDULE clause, the default
schedule is STATIC and the default chunk size is roughly the number of
iterations divided by the number of threads.

• THREADPRIVATE directives: if the dynamic threads mechanism is enabled, the
definition and association status of a thread's copy of the variable is undefined and
the allocation status of an allocatable array is undefined.

• PRIVATE clause: if a variable is declared as PRIVATE and the variable is
referenced in the definition of a statement function, and the statement function
is used within the lexical extent of the directive construct, then the statement
function references the PRIVATE version of the variable.

• ATOMIC directives: the ATOMIC directive is replaced with a critical section that
encloses the statement.

136 S–3901–71

Using the OpenMP Fortran API [6]

• OpenMP library functions:

– OMP_SET_NUM_THREADS—If dynamic adjustment of the number of threads
is disabled, the number_of_threads argument sets the number of threads
for all subsequent parallel regions until this procedure is called again with
a different value.

– OMP_SET_DYNAMIC—The default for dynamic thread adjustment is on.

– OMP_NESTED—The default for nested parallelism is false.

– OMP_SET_MAX_ACTIVE_LEVELS—The Cray implementation of OpenMP
supports the OpenMP 3.0 omp_set_max_active_levels option to limit
the depth of nested parallelism. The number specified controls the maximum
number of nested parallel levels with more than one thread. The default value
is 1 (nesting disabled).

– OMP_GET_MAX_ACTIVE_LEVELS—The Cray implementation of OpenMP
supports the OpenMP 3.0 omp_get_max_active_levels function to
return the maximum number of nested parallel levels currently allowed.

• OpenMP environment variables:

– OMP_DYNAMIC—The default value is .TRUE.

– OMP_NESTED—The default value is .FALSE.

– OMP_NUM_THREADS—If this environment variable is not set and the user
does not use the omp_set_num_threads call to set the number of
OpenMP threads, the default is 1 thread.

The maximum number of threads per compute node is 4 times the number of
allocated processors. If the requested value of OMP_NUM_THREADS is more
than the number of threads an implementation can support, the behavior of the
program depends on the value of the OMP_DYNAMIC environment variable.
If OMP_DYNAMIC is .FALSE., the program terminates. If OMP_DYNAMIC
is .TRUE., it uses up to 4 times the number of allocated processors. For
example, on a quad-core system, this means the program can use up to 16
threads per compute node.

– OMP_SCHEDULE—The default values for this environment variable are
STATIC for schedule and 0 for chunk size.

– OMP_MAX_ACTIVE_LEVELS—The default value is 1.

– OMP_STACKSIZE—The default value is 128MB.

– OMP_THREAD_LIMIT—Sets the number of OpenMP threads to use for
the whole OpenMP program by setting the thread-limit-var ICV. The Cray
implementation defaults to four times the number of available processors.

S–3901–71 137

Cray Fortran Reference Manual

– OMP_WAIT_POLICY—Provides a hint to an OpenMP implementation about
the desired behavior of waiting threads by setting the wait-policy-var ICV. A
compliant OpenMP implementation may or may not abide by the setting of
the environment variable. The default value is active.

• OpenMP library routines with generic interfaces: if an OMP runtime library
routine interface is defined to be generic by an implementation, use of arguments
of kind other than those specified by the OMP_*_KIND constants is undefined.

These OpenMP features have Cray-specific behaviors in areas not defined as
implementation-dependent by the OpenMP specification:

• If the omp_lib module is not used and the kind of the actual argument does
not match the kind of the dummy argument, the behavior of the procedure is
undefined.

• The omp_get_wtime and omp_get_wtick procedures return
REAL(KIND=8) values instead of DOUBLE PRECISION values.

6.3 Optimizations
A certain amount of overhead is associated with multiprocessing a loop. If the work
occurring in the loop is small, the loop can actually run slower by multiprocessing
than by single processing. To avoid this, make the amount of work inside the
multiprocessed region as large as possible, as is shown in the following examples.

Consider the following code:

DO K = 1, N
DO I = 1, N

DO J = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

For the preceding code fragment, you can parallelize the J loop or the I loop. You
cannot parallelize the K loop because different iterations of the K loop read and write
the same values of A(I,J). Try to parallelize the outermost DO loop if possible,
because it encloses the most work. In this example, that is the I loop. For this
example, use the technique called loop interchange. Although the parallelizable loops
are not the outermost ones, you can reorder the loops to make one of them outermost.

138 S–3901–71

Using the OpenMP Fortran API [6]

Thus, loop interchange would produce the following code fragment:

!$OMP PARALLEL DO PRIVATE(I, J, K)
DO I = 1, N

DO K = 1, N
DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)
END DO

END DO
END DO

Now the parallelizable loop encloses more work and shows better performance.
In practice, relatively few loops can be reordered in this way. However, it does
occasionally happen that several loops in a nest of loops are candidates for
parallelization. In such a case, it is usually best to parallelize the outermost one.

Occasionally, the only loop available to be parallelized has a fairly small amount of
work. It may be worthwhile to force certain loops to run without parallelism or to
select between a parallel version and a serial version, on the basis of the length of
the loop.

Example 2: Conditional parallelism. The loop is worth parallelizing if N is
sufficiently large. To overcome the parallel loop overhead, N needs to be around
1000, depending on the specific hardware and the context of the program. The
optimized version would use an IF clause on the PARALLEL DO directive:

!$OMP PARALLEL DO IF (N .GE. 1000), PRIVATE(I)
DO I = 1, N

A(I) = A(I) + X*B(I)
END DO

6.4 Compiler Options
These Cray Fortran compiler options affect OpenMP directives and usage.

-h [no]omp Enables or disables compiler recognition of OpenMP directives.
By default, OpenMP is enabled. This option is identical to the -O
[no]omp option and is provided for command-line compatibility
with the Cray C/C++ compiler. For more information, see -h
[no]omp on page 37.

-h [no]omp_trace

Enables or disables the insertion of CrayPat OpenMP tracing
calls. By default tracing is off. For more information, see -h
[no]omp_trace on page 37.

-O [no]omp This option is identical to -h [no]omp.

S–3901–71 139

Cray Fortran Reference Manual

-h threadn This option controls both OpenMP and autothreading. If n is 0, both
OpenMP and autothreading are disabled. For n 1 through 3, other
behaviors are specified. This option is identical to -O threadn and
is provided for command-line compatibility with the Cray C/C++
compiler. For more information, see -O threadn on page 56.

-O threadn This option is identical to -h threadn.

-x dirlist This option can be used to disable specified directives or classes of
directives, including OpenMP directives. For more information, see
-x dirlist on page 71.

6.5 aprun Options
The -d depth option of the aprun command is required to reserve more than one
physical processor for an OpenMP process. For best performance, depth should
be the same as the maximum number of threads the program uses. The maximum
number of threads per compute node is 4 times the number of allocated processors.

This example shows how to reserve the physical processors:

aprun -d depth ompProgram

If neither the OMP_NUM_THREADS environment variable nor the
omp_set_num_threads() call is used to set the number of OpenMP threads,
the system defaults to 1 thread.

The aprun options -n processes and -N processes_per_node are compatible with
OpenMP but do not directly affect the execution of OpenMP programs.

140 S–3901–71

Cray Fortran Defined Externals [7]

7.1 Conformance Checks
The amount of error-checking of edit descriptors with input/output (I/O) list items
during formatted READ and WRITE statements can be selected through a compiler
driver option or through an environment variable.

By default, the compiler provides only limited error-checking.

Use the compiler driver options to choose the table to be used for the conformance
check. The table is then part of the executable and no environment variable is
required. The compiler driver options allow a choice of checking or no checking with
a particular version of the Fortran standard for formatted READ and WRITE. See the
following tables: Table 16, Table 17, Table 18, and Table 19.

The environment variable FORMAT_TYPE_CHECKING is evaluated during
execution. The environment variable overrides a table chosen through the compiler
driver option. The environment variable provides an intermediate type of checking
that is not provided by the compiler driver option. The environment variable
FORMAT_TYPE_CHECKING is described in Interaction of Directives with the -x
Command Line Option on page 87.

To select the least amount of checking, use one or more of the following ftn
command line options.

• On CLE systems with formatted READ, use:

ftn -W1,--defsym,_RCHK=_RNOCHK *.f(note the double dashes
that precede defsym)

• On CLE systems with formatted WRITE, use:

ftn -W1,--defsym,_WCHK=_WNOCHK *.f

• On CLE systems with both formatted READ and WRITE, use:

ftn -W1,--defsym,_WCHK=_WNOCHK -W1,--defsym,_RCHK=_RNOCHK *.f

S–3901–71 141

Cray Fortran Reference Manual

To select strict amount of checking for either FORTRAN 77 or Fortran 90, use one
or more of the following ftn command line options.

• On CLE systems with formatted READ, use:

ftn -W1,--defsym,_RCHK=_RCHK77 *.f

ftn -W1,--defsym,_RCHK=_RCHK90 *.f

• On CLE systems with formatted WRITE, use:

ftn -W1,--defsym,_WCHK=_WCHK77 *.f

ftn -W1,--defsym,_WCHK=_WCHK90 *.f

• On CLE systems with both formatted READ and WRITE, use:

ftn -W1,--defsym,_WCHK=_WCHK77 -W1,--defsym,_RCHK=_RCHK77 *.f

ftn -W1,--defsym,_WCHK=_WCHK90 -W1,--defsym,_RCHK=_RCHK90 *.f

142 S–3901–71

Cray Fortran Language Extensions [8]

The Cray Fortran Compiler supports extended features beyond those specified by
the current standard. Some of these extensions are widely implemented in other
compilers and likely to become standard features in the future, while others are
unique and specific to Cray systems. The implementation of any extension may
change in order to conform to future language standards.

For information about obsolete features, see Obsolete Features (Chapter 9, Obsolete
Features on page 175).

The listings provided by the compiler identify language extensions when the -e n
command line option is specified.

8.1 Characters, Lexical Tokens, and Source Form

8.1.1 Characters Allowed in Names

Variables, named constants, program units, common blocks, procedures, arguments,
constructs, derived types (types for structures), namelist groups, structure
components, dummy arguments, and function results are among the elements in a
program that have a name. As extensions, the Cray Fortran compiler permits the
following characters in names:

alphanumeric_character is currency_symbol

currency_symbol is $

A name must begin with a letter and can consist of letters, digits, and underscores.
The Cray Fortran compiler permits you to use the dollar sign ($) in a name, but it
cannot be the first character of a name.

Cray does not recommend using $ in user names because it can cause conflicts with
the names of internal variables or library routines.

8.1.2 Switching Source Forms

The Cray Fortran compiler allows you to switch between fixed and free source forms
within a source or include file by using the FIXED and FREE compiler directives.

S–3901–71 143

Cray Fortran Reference Manual

8.1.3 Continuation Line Limit

The Cray Fortran compiler allows a statement to have an unlimited number of
continuation lines. The Fortran standard allows only 255 continuation lines.

8.1.4 D Lines in Fixed Source Form

The Cray Fortran compiler allows a D or d character to occur in column one in fixed
source form. Typically, the compiler treats a line with a D or d character in column
one as a comment line. When the -e d command line option is in effect, however,
the compiler replaces the D or d character with a blank and treats the rest of the line
as a source statement. This can be used, for example, for debugging purposes if the
rest of the line contains a PRINT statement.

This functionality is controlled through the -e d and -d d options on the compiler
command line. For more information about these options, see the ftn(1) man page.

8.2 Types
The Cray Fortran compiler supports the following additional data types. This
preserves compatibility with other vendor's systems.

• Cray pointer

• Cray character pointer

• Boolean (or typeless)

The Cray Fortran compiler also supports the TYPEALIAS statement as a means of
creating alternate names for existing types and supports an expanded form of the
ENUM statement.

8.2.1 Alternate Form of LOGICAL Constants

The Cray Fortran compiler accepts .T. and .F. as alternate forms of .true. and
.false., respectively.

8.2.2 Cray Pointer Type

The Cray POINTER statement declares one variable to be a Cray pointer (that is, to
have the Cray pointer data type) and another variable to be its pointee. The value
of the Cray pointer is the address of the pointee. This POINTER statement has the
following format:

POINTER (pointer_name, pointee_name [(array_spec)])
[, (pointer_name, pointee_name [(array_spec)])] ...

144 S–3901–71

Cray Fortran Language Extensions [8]

pointer_name

Pointer to the corresponding pointee_name. pointer_name contains
the address of pointee_name. Only a scalar variable can be declared
type Cray pointer; constants, arrays, statement functions, and external
functions cannot.

pointee_name

Pointee of corresponding pointer_name. Must be a variable name,
array declarator, or array name. The value of pointer_name is
used as the address for any reference to pointee_name; therefore,
pointee_name is not assigned storage. If pointee_name is an
array declarator, it can be explicit-shape (with either constant or
nonconstant bounds) or assumed-size.

array_spec If present, this must be either an explicit_shape_spec_list, with either
constant or nonconstant bounds) or an assumed_size_spec.

Fortran pointers are declared as follows:

POINTER :: [object-name-list]

Cray Fortran pointers and Fortran standard pointers cannot be mixed.

Example:

POINTER(P,B),(Q,C)

This statement declares Cray pointer P and its pointee B, and Cray pointer Q and
pointee C; the pointer's current value is used as the address of the pointee whenever
the pointee is referenced.

An array that is named as a pointee in a Cray POINTER statement is a pointee array.
Its array declarator can appear in a separate type or DIMENSION statement or in the
pointer list itself. In a subprogram, the dimension declarator can contain references to
variables in a common block or to dummy arguments. As with nonconstant bound
array arguments to subprograms, the size of each dimension is evaluated on entrance
to the subprogram, not when the pointee is referenced. For example:

POINTER(IX, X(N,0:M))

In addition, pointees must not be deferred-shape or assumed-shape arrays. An
assumed-size pointee array is not allowed in a main program unit.

You can use pointers to access user-managed storage by dynamically associating
variables and arrays to particular locations in a block of storage. Cray pointers do not
provide convenient manipulation of linked lists because, for optimization purposes,
it is assumed that no two pointers have the same value. Cray pointers also allow the
accessing of absolute memory locations.

The range of a Cray pointer or Cray character pointer depends on the size of memory
for the machine in use.

S–3901–71 145

Cray Fortran Reference Manual

Restrictions on Cray pointers are as follows:

• A Cray pointer variable should only be used to alias memory locations by using
the LOC intrinsic.

• A Cray pointer cannot be pointed to by another Cray or Fortran pointer; that is,
a Cray pointer cannot also be a pointee or a target.

• A Cray pointer cannot appear in a PARAMETER statement or in a type declaration
statement that includes the PARAMETER attribute.

• A Cray pointer variable cannot be declared to be of any other data type.

• A Cray character pointer cannot appear in a DATA statement.

• An array of Cray pointers is not allowed.

• A Cray pointer cannot be a component of a structure.

Restrictions on Cray pointees are as follows:

• A Cray pointee cannot appear in a SAVE, STATIC, DATA, EQUIVALENCE,
COMMON, AUTOMATIC, or PARAMETER statement or Fortran pointer statement.

• A Cray pointee cannot be a dummy argument; that is, it cannot appear in a
FUNCTION, SUBROUTINE, or ENTRY statement.

• A function value cannot be a Cray pointee.

• A Cray pointee cannot be a structure component.

• An equivalence object cannot be a Cray pointee.

Note: Cray pointees can be of type character, but their Cray pointers are different
from other Cray pointers; the two kinds cannot be mixed in the same expression.

The Cray pointer is a variable of type Cray pointer and can appear in a COMMON list
or be a dummy argument in a subprogram.

The Cray pointee does not have an address until the value of the Cray pointer
is defined; the pointee is stored starting at the location specified by the pointer.
Any change in the value of a Cray pointer causes subsequent references to the
corresponding pointee to refer to the new location.

Cray pointers can be assigned values in the following ways:

• A Cray pointer can be set as an absolute address. For example:

Q = 0

• Cray pointers can have integer expressions added to or subtracted from them and
can be assigned to or from integer variables. For example:

P = Q + 100

146 S–3901–71

Cray Fortran Language Extensions [8]

However, Cray pointers are not integers. For example, assigning a Cray pointer to
a real variable is not allowed.

The (nonstandard) LOC(3i) intrinsic function generates the address of a variable
and can be used to define a Cray pointer, as follows:

P = LOC(X)

The following example uses Cray pointers in the ways just described:

SUBROUTINE SUB(N)
INTEGER WORDS
COMMON POOL(100000), WORDS(1000)
INTEGER BLK(128), WORD64
REAL A(1000), B(N), C(100000-N-1000)
POINTER(PBLK,BLK), (IA,A), (IB,B), &

(IC,C), (ADDRESS,WORD64)
ADDRESS = LOC(WORDS) + 64*KIND(WORDS)
PBLK = LOC(WORDS)
IA = LOC(POOL)
IB = IA + 1000*KIND(POOL)
IC = IB + N*KIND(POOL)

BLK is an array that is another name for the first 128 words of array WORDS. A is
an array of length 1000; it is another name for the first 1000 elements of POOL. B
follows A and is of length N. C follows B. A, B, and C are associated with POOL.
WORD64 is the same as BLK(65) because BLK(1) is at the initial address of
WORDS.

S–3901–71 147

Cray Fortran Reference Manual

If a pointee is of a noncharacter data type that is one machine word or longer, the
address stored in a pointer is a word address. If the pointee is of type character or of
a data type that is less than one word, the address is a byte address. The following
example also uses Cray pointers:

PROGRAM TEST
REAL X(*), Y(*), Z(*), A(10)
POINTER (P_X,X)
POINTER (P_Y,Y)
POINTER (P_Z,Z)
INTEGER*8 I,J

!USE LOC INTRINSIC TO SET POINTER MEMORY LOCATIONS
!*** RECOMMENDED USAGE, AS PORTABLE CRAY POINTERS ***
P_X = LOC(A(1))
P_Y = LOC(A(2))

!USE POINTER ARITHMETIC TO DEMONSTRATE COMPILER AND COMPILER
!FLAG DIFFERENCES
!*** USAGE NOT RECOMMENDED, HIGHLY NON-PORTABLE ***
P_Z = P_X + 1

I = P_Y
J = P_Z

IF (I .EQ. J) THEN
PRINT *, 'NOT A BYTE-ADDRESSABLE MACHINE'

ELSE
PRINT *, 'BYTE-ADDRESSABLE MACHINE'

ENDIF

END

On Cray systems, this prints the following:

Byte-addressable machine

Note: Cray does not recommend the use of pointer arithmetic because it is not
portable.

For purposes of optimization, the compiler assumes that the storage of a pointee is
never overlaid on the storage of another variable; that is, it assumes that a pointee is
not associated with another variable or array. This kind of association occurs when a
Cray pointer has two pointees, or when two Cray pointers are given the same value.
Although these practices are sometimes used deliberately (such as for equivalencing
arrays), results can differ depending on whether optimization is turned on or off. You
are responsible for preventing such association. For example:

POINTER(P,B), (P,C)
REAL X, B, C
P = LOC(X)
B = 1.0
C = 2.0
PRINT *, B

148 S–3901–71

Cray Fortran Language Extensions [8]

Because B and C have the same pointer, the assignment of 2.0 to C gives the same
value to B; therefore, B will print as 2.0 even though it was assigned 1.0.

As with a variable in common storage, a pointee, pointer, or argument to a LOC(3i)
intrinsic function is stored in memory before a call to an external procedure and is
read out of memory at its next reference. The variable is also stored before a RETURN
or END statement of a subprogram.

8.2.3 Cray Character Pointer Type

If a pointee is declared as a character type, its Cray pointer is a Cray character pointer.

Restrictions for Cray pointers also apply to Cray character pointers. In addition, the
following restrictions apply:

• When included in an I/O statement iolist, a Cray character pointer is treated
as an integer.

• If the length of the pointee is explicitly declared (that is, not of an assumed
length), any reference to that pointee uses the explicitly declared length.

• If a pointee is declared with an assumed length (that is, as CHARACTER(*)), the
length of the pointee comes from the associated Cray character pointer.

• A Cray character pointer can be used in a relational operation only with another
Cray character pointer. Such an operation applies only to the character address
and bit offset; the length field is not used.

8.2.4 Boolean Type

A Boolean constant represents the literal constant of a single storage unit. There
are no Boolean variables or arrays, and there is no Boolean type statement. Binary,
octal, and hexadecimal constants are used to represent Boolean values. For more
information about Boolean expressions, see Expressions on page 154.

8.2.5 Alternate Form of ENUM Statement

An enumeration defines the name of a group of related values and the name of each
value within the group. The Cray Fortran compiler allows the following additional
form for enum_def (enumerations):

enum_def_stmt is ENUM, [,BIND(C)] [[::]
type_alias_name]

or ENUM [kind_selector] [[::]
type_alias_name]

S–3901–71 149

Cray Fortran Reference Manual

• kind_selector. If it is not specified, the compiler uses the default integer kind.

• type_alias_name is the name you assign to the group. This name is treated as a
type alias name.

8.2.6 TYPEALIAS Statement

A TYPEALIAS statement allows you to define another name for an intrinsic data
type or user-defined data type. Thus, the type alias and the type specification it
aliases are interchangeable. Type aliases do not define a new type.

This is the form for type aliases:

type_alias_stmt is TYPEALIAS :: type_alias_list

type_alias is type_alias_name => type_spec

This example shows how a type alias can define another name for an intrinsic type, a
user-defined type, and another type alias:

TYPEALIAS :: INTEGER_64 => INTEGER(KIND = 8), &
TYPE_ALIAS => TYPE(USER_DERIVED_TYPE), &
ALIAS_OF_TYPE_ALIAS => TYPE(TYPE_ALIAS)

INTEGER(KIND = 8) :: I
TYPE(INTEGER_64) :: X, Y
TYPE(TYPE_ALIAS) :: S
TYPE(ALIAS_OF_TYPE_ALIAS) :: T

You can use a type alias or the data type it aliases interchangeably. That is, explicit
or implicit declarations that use a type alias have the same effect as if the data type
being aliased was used. For example, the above declarations of I, X, and Y are the
same. Also, S and T are the same.

If the type being aliased is a derived type, the type alias name can be used to declare a
structure constructor for the type.

The following are allowed as the type_spec in a TYPEALIAS statement:

• Any intrinsic type defined by the Cray Fortran compiler.

• Any type alias in the same scoping unit.

• Any derived type in the same scoping unit.

8.3 Data Object Declarations and Specifications
The Cray Fortran compiler accepts the following extensions to declarations.

150 S–3901–71

Cray Fortran Language Extensions [8]

8.3.1 Attribute Specification Statements

8.3.1.1 BOZ Constants in DATA Statements

The Cray Fortran compiler permits a default real object to be initialized with a
BOZ, typeless, or character (used as Hollerith) constant in a DATA statement. BOZ
constants are formatted in binary, octal, or hexadecimal. No conversion of the BOZ
value, typeless value, or character constant takes place.

The Cray Fortran compiler permits an integer object to be initialized with a BOZ,
typeless, or character (used as Hollerith) constant in a type declaration statement. The
Cray Fortran compiler also allows an integer object to be initialized with a typeless or
character (used as Hollerith) constant in a DATA statement.

If the last item in the data_object_list is an array name, the value list can contain
fewer values than the number of elements in the array. Any element that is not
assigned a value is undefined.

The following alternate forms of BOZ constants are supported.

literal-constant is typeless-constant

typeless-constant is octal-typeless-constant

octal-typeless-constant is digit [digit...] B

or " digit [digit...] "O

or ' digit [digit...] 'O

hexadecimal-typeless-constant is X' hex-digit [hex-digit...]'

or X" hex-digit [hex-digit...] "

or ' hex-digit [hex-digit...] 'X

or " hex-digit [hex-digit...] "X

8.3.1.2 Attribute Respecification

The Cray Fortran compiler permits an attribute to appear more than once in a given
type declaration.

S–3901–71 151

Cray Fortran Reference Manual

8.3.1.3 AUTOMATIC Attribute and Statement

The Cray Fortran AUTOMATIC attribute specifies stack-based storage for a variable
or array. Such variables and arrays are undefined upon entering and exiting the
procedure. The following is the format for the AUTOMATIC specification:

type, AUTOMATIC [, attribute-list] :: entity-list

automatic-stmt is AUTOMATIC [[::]]entity-list

entity-list

For entity-list, specify a variable name or an array declarator.
If an entity-list item is an array, it must be declared with an
explicit-shape-spec with constant bounds. If an entity-list item is a
pointer, it must be declared with a deferred-shape-spec.

If an entity-list item has the same name as the function in which it is declared, the
entity-list item must be scalar and of type integer, real, logical, complex, or double
precision.

If the entity-list item is a pointer, the AUTOMATIC attribute applies to the pointer
itself and not to any target that may become associated with the pointer.

Subject to the rules governing combinations of attributes, attribute-list can contain
the following:

DIMENSION

TARGET

POINTER

VOLATILE

The following entities cannot have the AUTOMATIC attribute:

• Pointers or arrays used as function results

• Dummy arguments

• Statement functions

• Automatic array or character data objects

152 S–3901–71

Cray Fortran Language Extensions [8]

An entity-list item cannot have the following characteristics:

• It cannot be defined in the scoping unit of a module.

• It cannot be a common block item.

• It cannot be specified more than once within the same scoping unit.

• It cannot be initialized with a DATA statement or with a type declaration
statement.

• It cannot also have the SAVE or STATIC attribute.

• It cannot be specified as a Cray pointee.

8.3.2 IMPLICIT Statement

8.3.2.1 IMPLICIT Extensions

The Cray Fortran compiler accepts the IMPLICIT AUTOMATIC or
IMPLICIT STATIC syntax. It is recommended that none of the IMPLICIT
extensions be used in new code.

8.3.3 Storage Association of Data Objects

8.3.3.1 EQUIVALENCE Statement Extensions

The Cray Fortran compiler allows equivalencing of character data with noncharacter
data. The Fortran standard does not address this. It is recommended that you do
not perform equivalencing in this manner, however, because alignment and padding
differs across platforms, thus rendering your code less portable.

8.3.3.2 COMMON Statement Extensions

The Cray Fortran compiler treats named common blocks and blank common blocks
identically, as follows:

• Variables in blank common and variables in named common blocks can be
initialized.

• Named common blocks and blank common are always saved.

• Named common blocks of the same name and blank common can be of different
sizes in different scoping units.

S–3901–71 153

Cray Fortran Reference Manual

8.4 Expressions and Assignment

8.4.1 Expressions

In Fortran, calculations are specified by writing expressions. Expressions look much
like algebraic formulas in mathematics, particularly when the expressions involve
calculations on numerical values.

Expressions often involve nonnumeric values, such as character strings, logical
values, or structures; these also can be considered to be formulas that involve
nonnumeric quantities rather than numeric ones.

8.4.1.1 Rules for Forming Expressions

The Cray Fortran compiler supports exclusive disjunct expressions of the form:

exclusive-disjunct-expr is [exclusive-disjunct-expr .XOR.] inclusive-disjunct-expr

8.4.1.2 Intrinsic and Defined Operations

Cray supports the following intrinsic operators as extensions:

less_greater_op is .LG.

or <>

not_op is .N.

and_op is .A.

or_op is .O.

exclusive_disjunct_op is .XOR.

or .X.

The Cray Fortran less than or greater than intrinsic operation is represented
by the <> operator and the .LG. keyword. This operation is suggested by
the IEEE standard for floating-point arithmetic, and the Cray Fortran compiler
supports this operator. Only values of type real can appear on either side of the
<> or .LG. operators. If the operands are not of the same kind type value, the
compiler converts them to equivalent kind types. The <> and .LG. operators
perform a less-than-or-greater-than operation as specified in the IEEE standard for
floating-point arithmetic.

The Cray Fortran compiler allows abbreviations for the logical and masking
operators. The abbreviations .A., .O., .N., and .X. are synonyms for .AND.,
.OR., .NOT., and .XOR., respectively.

154 S–3901–71

Cray Fortran Language Extensions [8]

The masking of Boolean operators and their abbreviations, which are extensions to
Fortran, can be redefined as defined operators. If you redefine a masking operator,
your definition overrides the intrinsic masking operator definition. See Table 10,
for a list of the operators.

8.4.1.3 Intrinsic Operations

In the following table, the symbols I, R, Z, C, L, B, and P stand for the types integer,
real, complex, character, logical, Boolean, and Cray pointer, respectively. Where
more than one type for x2 is given, the type of the result of the operation is given
in the same relative position in the next column. Boolean and Cray pointer types
are extensions of the Fortran standard.

Table 9. Operand Types and Results for Intrinsic Operations

Intrinsic operator Type of x1 Type of x2 Type of result

Unary +, - I, R, Z, B, P I, R, Z, I, P

Binary +, -, *, /, ** I I, R, Z, B, P I, R, Z, I, P

R I, R, Z, B R, R, Z, R

Z I, R, Z Z, Z, Z

B I, R, B, P I, R, B, P

P I, B, P P, P, P

(For Cray pointer,
only + and - are
allowed.)

// C C C

.EQ., ==, .NE., /= I I, R, Z, B, P L, L, L, L, L

R I, R, Z, B, P L, L, L, L, L

Z I, R, Z, B, P L, L, L, L, L

B I, R, Z, B, P L, L, L, L, L

P I, R, Z, B, P L, L, L, L, L

C C L

.GT., >, .GE., >=, .LT., <, .LE., <= I I, R, B, P L, L, L, L

R I, R, B L, L, L

C C L

P I, P L, L

.LG., <> R R L

.NOT. L L

I, R, B B

S–3901–71 155

Cray Fortran Reference Manual

Intrinsic operator Type of x1 Type of x2 Type of result

.AND., .OR., .EQV., .NEQV., .XOR. L L L

I, R, B I, R, B B

The operators .NOT., .AND., .OR., .EQV., and .XOR. can also be used in the
Cray Fortran compiler's bitwise masking expressions; these are extensions to the
Fortran standard. The result is Boolean (or typeless) and has no kind type parameters.

8.4.1.4 Bitwise Logical Expressions

A bitwise logical expression (also called a masking expression) is an expression in
which a logical operator operates on individual bits within integer, real, Cray pointer,
or Boolean operands, giving a result of type Boolean. Each operand is treated as a
single storage unit. The result is a single storage unit, which is either 32 or 64 bits
depending on the -s option specified during compilation. Boolean values and bitwise
logical expressions use the same operators but are different from logical values and
expressions.

Table 10. Cray Fortran Intrinsic Bitwise Operators and the Allowed Types of
their Operands

Operator category Intrinsic operator Operand types

Bitwise masking (Boolean)
expressions

.NOT., .AND., .OR.,

.XOR., .EQV., .NEQV.
Integer, real, typeless, or Cray pointer.

Bitwise logical operators can also be written as functions; for example A .AND. B
can be written as IAND(A,B) and .NOT. A can be written as NOT(A).

Table 11 shows which data types can be used together in bitwise logical operations.

Table 11. Data Types in Bitwise Logical Operations

x1 x2
1 Integer Real Boolean Pointer Logical Character

Integer Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid2

1 x1 and x2 represent operands for a logical or bitwise expression, using operators .NOT., .AND., .OR.,
.XOR., .NEQV., and .EQV..

2 Indicates that if the operand is a character operand of 32 or fewer characters, the operand is treated as a
Hollerith constant and is allowed.

156 S–3901–71

Cray Fortran Language Extensions [8]

x1 x2
1 Integer Real Boolean Pointer Logical Character

Real Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid2

Boolean Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid2

Pointer Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid2

Logical Not valid2 Not valid2 Not valid2 Not valid2 Logical
operation
logical result

Not valid2

Character Not valid2 Not valid2 Not valid2 Not valid2 Not valid Not valid2

Bitwise logical expressions can be combined with expressions of Boolean or
other types by using arithmetic, relational, and logical operators. Evaluation of an
arithmetic or relational operator processes a bitwise logical expression with no type
conversion. Boolean data is never automatically converted to another type.

A bitwise logical expression performs the indicated logical operation separately
on each bit. The interpretation of individual bits in bitwise multiplication-exprs,
summation-exprs, and general expressions is the same as for logical expressions.
The results of binary 1 and 0 correspond to the logical results TRUE and FALSE,
respectively, in each of the bit positions. These values are summarized as follows:

.NOT. 1100 1100 1100 1100 1100
=0011 .AND. 1010 .OR. 1010 .XOR. 1010 .EQV. 1010

---- ---- ---- ----
1000 1110 0110 1001

8.4.2 Assignment

The Cray Fortran compiler supports Boolean and Cray pointer intrinsic assignments.
The Cray Fortran compiler supports type Boolean or BOZ constants in assignment
statements in which the variable is of type integer or real. The bits specified by the
constant are moved into the variable with no type conversion.

S–3901–71 157

Cray Fortran Reference Manual

8.5 Execution Control

8.5.1 STOP Code Extension

The STOP statement terminates the program whenever and wherever it is executed.
The STOP statement is defined as follows:

stop-stmt is STOP [stop_code]

stop-code is scalar_char_constant

or digit ...

The character constant or list of digits identifying the STOP statement is optional and
is called a stop-code. When the stop-code is a string of digits, leading zeros are not
significant; 10 and 010 are the same stop-code. The Cray Fortran compiler accepts 1
to 80 digits; the standard accepts up to 5 digits.

The stop code is accessible following program termination. The Cray Fortran
compiler sends it to the standard error file (stderr). The following are examples of
STOP statements:

STOP
STOP 'Error #823'
STOP 20

8.6 Input/Output Statements
The Fortran standard does not specifically describe the implementation of I/O
processing. This section provides information about processor-dependent areas and
the implementation of the support for I/O.

158 S–3901–71

Cray Fortran Language Extensions [8]

8.6.1 File Connection

8.6.1.1 OPEN Statement

The OPEN statement specifies the connection properties between the file and the unit,
using keyword specifiers, which are described in this section. Table 12 indicates the
Cray Fortran compiler extension in an OPEN statement.

Table 12. Values for Keyword Specifier Variables in an OPEN Statement

Specifier Possible values Default value

FORM= SYSTEM Unformatted with no record marks

The FORM= specifier has the following format:

FORM= scalar-char-expr

A file opened with SYSTEM is unformatted and has no record marks.

8.7 Error, End-of-record, and End-of-file Conditions

8.7.1 End-of-file Condition and the END-specifier

8.7.1.1 Multiple End-of-file Records

The file position prior to data transfer depends on the method of access: sequential or
direct. Although the Fortran standard does not allow files that contain an end-of-file
to be positioned after the end-of-file prior to data transfer, the Cray Fortran compiler
permits more than one end-of-file for some file structures.

8.8 Input/Output Editing

8.8.1 Data Edit Descriptors

8.8.1.1 Integer Editing

The Cray Fortran compiler allows w to be zero for the G edit descriptor, and it permits
w to be omitted for the I, B, O, Z, or G edit descriptors.

S–3901–71 159

Cray Fortran Reference Manual

The Cray Fortran compiler allows signed binary, octal, or hexadecimal values as
input.

If the minimum digits (m) field is specified, the default field width is increased, if
necessary, to allow for that minimum width.

Note: CLE systems support 1- and 2-byte data types when the -eh compiler
option is enabled. Cray discourages the use of this option because it can severely
degrade performance. For more information about the -eh option, see -d disable
and -e enable on page 25.

8.8.1.2 Real Editing

The Cray Fortran compiler allows the use of B, O, and Z edit descriptors of REAL
data items. The Cray Fortran compiler accepts the D[w.dEe] edit descriptor.

The Cray Fortran compiler accepts the ZERO_WIDTH_PRECISION environment
variable, which can be used to modify the default size of the width w field.
This environment variable is examined only upon program startup. Changing
the value of the environment variable during program execution has no effect.
For more information about the ZERO_WIDTH_PRECISION environment, see
ZERO_WIDTH_PRECISION Environment Variable on page 78.

The Cray Fortran compiler allows w to be zero or omitted for the D, E, EN, ES, or
G edit descriptors.

The Cray Fortran compiler does not restrict the use of Ew.d and Dw.d to an
exponent less than or equal to 999. The Ew.dEe form must be used.

Table 13. Default Fractional and Exponent Digits

Data size and representation w d e

4-byte (32-bit) IEEE 17 9 2

8-byte (64-bit) IEEE 26 17 3

8.8.1.3 Logical Editing

The Cray Fortran compiler allows w to be zero or omitted on the L or G edit
descriptors.

8.8.1.4 Character Editing

The Cray Fortran compiler allows w to be zero or omitted on the G edit descriptor.

160 S–3901–71

Cray Fortran Language Extensions [8]

8.8.2 Control Edit Descriptors

8.8.2.1 Q Editing

The Cray Fortran supports the Q edit descriptor. The Q edit descriptor is used to
determine the number of characters remaining in the input record. It has the following
format:

Q

When a Q edit descriptor is encountered during execution of an input statement, the
corresponding input list item must be of type integer. Interpretation of the Q edit
descriptor causes the input list item to be defined with a value that represents the
number of characters remaining to be read in the formatted record.

For example, if c is the character position within the current record of the next
character to be read, and the record consists of n characters, then the item is defined
with the following value MAX(n-c+1,0).

If no characters have yet been read, then the item is defined as n (the length of the
record). If all the characters of the record have been read (c>n), then the item is
defined as zero.

The Q edit descriptor must not be encountered during the execution of an output
statement.

The following example code uses Q on input:

INTEGER N
CHARACTER LINE * 80
READ (*, FMT='(Q,A)') N, LINE(1:N)

8.8.3 List-directed Formatting

8.8.3.1 List-directed Input

Input values are generally accepted as list-directed input if they are the same as those
required for explicit formatting with an edit descriptor. The exceptions are as follows:

• When the data list item is of type integer, the constant must be of a form suitable
for the I edit descriptor. The Cray Fortran compiler permits binary, octal, and
hexadecimal based values in a list-directed input record to correspond to I edit
descriptors.

S–3901–71 161

Cray Fortran Reference Manual

8.8.4 Namelist Formatting

8.8.4.1 Namelist Extensions

The Cray Fortran compiler has extended the namelist feature. The following
additional rules govern namelist processing:

• An ampersand (&) or dollar sign ($) can precede the namelist group name or
terminate namelist group input. If an ampersand precedes the namelist group
name, either the slash (/) or the ampersand must terminate the namelist group
input. If the dollar sign precedes the namelist group name, either the slash or the
dollar sign must terminate the namelist group input.

• Octal and hexadecimal constants are allowed as input to integer and
single-precision real namelist group items. An error is generated if octal
and hexadecimal constants are specified as input to character, complex, or
double-precision real namelist group items.

Octal constants must be of the following form:

– O"123"

– O'123'

– o"123"

– o'123'

Hexadecimal constants must be of the following form:

– Z"1a3"

– Z'1a3'

– z"1a3"

– z'1a3'

8.8.5 I/O Editing

Usually, data is stored in memory as the values of variables in some binary form. On
the other hand, formatted data records in a file consist of characters. Thus, when data
is read from a formatted record, it must be converted from characters to the internal
representation. When data is written to a formatted record, it must be converted from
the internal representation into a string of characters.

162 S–3901–71

Cray Fortran Language Extensions [8]

Table 14 and Table 15, list the control and data edit descriptor extensions supported
by the Cray Fortran compiler and provide a brief description of each.

Table 14. Summary of Control Edit Descriptors

Descriptor Description

$ or \ Suppress carriage control

Table 15. Summary of Data Edit Descriptors

Descriptor Description

Q Return number of characters left in record

For more information about the Q edit descriptor, see Q Editing on page 161.

The following tables show the use of the Cray Fortran compiler's edit descriptors with
all intrinsic data types. In these tables:

• NA indicates invalid usage that is not allowed.

• I,O indicates that usage is allowed for both input and output.

• I indicates legal usage for input only.

Table 16. Default Compatibility Between I/O List Data Types and Data Edit
Descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer I I,O I,O I,O NA I,O I,O NA NA NA NA NA I,O I,O

Real NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Complex NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Logical NA I,O I,O I,O I,O NA I,O NA NA NA NA NA I,O I,O

Character NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

S–3901–71 163

Cray Fortran Reference Manual

Table 17 shows the restrictions for the various data types that are allowed when you
set the FORMAT_TYPE_CHECKING environment variable to RELAXED. Not all data
edit descriptors support all data sizes; for example, you cannot read/write a 16–byte
real variable with an I edit descriptor.

Table 17. RELAXED Compatibility Between Data Types and Data Edit Descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer I I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O NA I,O I,O

Real NA I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O

Complex NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Logical NA I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O NA I,O I,O

Character NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

Table 18 shows the restrictions for the various data types that are allowed when you
set the FORMAT_TYPE_CHECKING environment variable to STRICT77.

Table 18. STRICT77 Compatibility Between Data Types and Data Edit
Descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer NA I,O NA I,O NA I,O NA NA NA NA NA NA I,O NA

Real NA NA NA NA NA NA I,O I,O NA NA I,O I,O NA NA

Complex NA NA NA NA NA NA I,O I,O NA NA I,O I,O NA NA

Logical NA NA NA NA I,O NA NA NA NA NA NA NA NA NA

Character NA NA NA NA NA NA NA NA NA NA NA NA NA I,O

Table 19 shows the restrictions for the various data types that are allowed when
you set the FORMAT_TYPE CHECKING environment variable to STRICT90 or
STRICT95.

Table 19. STRICT90 and STRICT95 Compatibility Between Data Types and Data
Edit Descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer NA I,O NA I,O NA I,O I,O NA NA NA NA NA I,O NA

Real NA NA NA NA NA NA I,O I,O I,O I,O I,O I,O NA NA

Complex NA NA NA NA NA NA I,O I,O I,O I,O I,O I,O NA NA

164 S–3901–71

Cray Fortran Language Extensions [8]

Data types Q Z R O L I G F ES EN E D B A

Logical NA NA NA NA I,O NA I,O NA NA NA NA NA NA NA

Character NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

8.9 Program Units

8.9.1 Main Program

8.9.1.1 Program Statement Extension

The Cray Fortran compiler supports the use of a parenthesized list of args at the end
of a program statement. The compiler ignores any args specified after program-name.

8.9.2 Block Data Program Units

8.9.2.1 Block Data Program Unit Extension

The Cray Fortran compiler permits named common blocks to appear in more than one
block data program unit.

8.10 Procedures

8.10.1 Procedure Interface

8.10.1.1 Interface Duplication

The Cray Fortran compiler allows you to specify an interface body for the program
unit being compiled if the interface body matches the program unit definition.

8.10.2 Procedure Definition

8.10.2.1 Recursive Function Extension

The Cray Fortran compiler allows direct recursion for functions that do not specify a
RESULT clause on the FUNCTION statement.

8.10.2.2 Empty CONTAINS Sections

The Cray Fortran compiler allows a CONTAINS statement with no internal or module
procedure following. This is proposed for the 2008 Fortran standard.

S–3901–71 165

Cray Fortran Reference Manual

8.11 Intrinsic Procedures and Modules

8.11.1 Standard Generic Intrinsic Procedures

8.11.1.1 Intrinsic Procedures

The Cray Fortran compiler has implemented intrinsic procedures in addition to
the ones required by the standard. These procedures have the status of intrinsic
procedures, but programs that use them may not be portable. It is recommended
that such procedures be declared INTRINSIC to allow other processors to diagnose
whether or not they are intrinsic for those processors.

The nonstandard intrinsic procedures supported by the Cray Fortran compiler that
are not obsolete are summarized in the following list. For more information about a
particular procedure, see its man page.

ACOSD Arccosine, value in degrees

ADD_CARRY@ Add vectors with carry

ADD_CARRY_S@

Add scalars with carry

AMO_AADD Atomic memory add

AMO_AFADD Atomic memory add, return old

AMO_AAX Atomic memory logicals

AMO_AFAX Atomic memory logicals, return old

AMO_ACSWAP Atomic compare and swap

ASIND Arcsine, value in degrees

ATAND Arctangent, value in degrees

ATAND2 Arctangent, value in degrees

COSD Cosine, argument in degrees

COT Cotangent

DSHIFTL Double word left shift (Proposed Fortran 2008 function)

DSHIFTR Double word right shift (Proposed Fortran 2008 function)

EXIT Program termination

FREE Free Cray pointee memory

166 S–3901–71

Cray Fortran Language Extensions [8]

GET_BORROW@

Get vector borrow bits

GET_BORROW_S@

Get scalar borrow bit

GSYNC Complete outstanding memory references

IBCHNG Reverse bit within a word

ILEN Length in bits of an integer

INT_MULT_UPPER

Upper bits of integer product

LEADZ Number of leading 0 bits (Proposed Fortran 2008 function)

LOC Address of argument

M@CLR Clears BML bit

M@LD Bit matrix load

M@LDMX Combined bit matrix load and multiply

M@MOR Bit matrix inclusive or

M@MX Bit matrix multiply

M@UL Bit matrix unload

MALLOC Allocate Cray pointee memory

MASK Creates a bit mask in a word

NUMARG Number of arguments in a call

NUM_IMAGES Number of executing images (Proposed Fortran 2008 function)

POPCNT Number of 1 bits in a word (Proposed Fortran 2008 function)

POPPAR XOR reduction of bits in a word (Proposed Fortran 2008 function)

QPROD Quad precision product

SET_BORROW@

Set vector borrow bits

SET_BORROW_S@

Set scalar borrow bits

SET_CARRY@ Set vector carry bits

S–3901–71 167

Cray Fortran Reference Manual

SET_CARRY_S@

Set scalar carry bits

SHIFTA Arithmetic right shift (Proposed Fortran 2008 function)

SHIFTL Left shift, zero fill (Proposed Fortran 2008 function)

SHIFTR Right shift, zero fill (Proposed Fortran 2008 function)

SIND Sin, argument in degrees

SIZEOF Size of argument in bytes

SUB_BORROW@

Subtract vector with borrow

SUB_BORROW_S@

Subtract scalar with borrow

SYNC_IMAGES

Synchronize indicated images

TAND Tangent, argument in degrees

THIS_IMAGE Image number of executing image (Proposed Fortran 2008 function)

TRAILZ Number of trailing 0 bits (Proposed Fortran 2008 function)

All Cray Fortran intrinsic procedures are described in man pages that can be accessed
online through the man(1) command.

Many intrinsic procedures have both a vector and a scalar version. If a vector version
of an intrinsic procedure exists, and the intrinsic is called within a vectorizable loop,
the compiler uses the vector version of the intrinsic. For information about which
intrinsic procedures vectorize, see intro_intrin(3i).

168 S–3901–71

Cray Fortran Language Extensions [8]

8.12 Exceptions and IEEE Arithmetic

8.12.1 The Exceptions

8.12.1.1 IEEE Intrinsic Module Extensions

The intrinsic module IEEE_EXCEPTIONS supplied with the Cray Fortran
compiler contains three named constants in addition to those specified by the
standard. These are of type IEEE_STATUS_TYPE and can be used as arguments
to the IEEE_SET_STATUS subroutine. Their definitions correspond to common
combinations of settings and allow for simple and fast changes to the IEEE mode
settings. The constants are:

Table 20. Cray Fortran IEEE Intrinsic Module Extensions

Name
Effect of CALL IEEE_SET_STATUS
(Name)

ieee_cri_nostop_mode
• Clears all currently set exception flags

• Disables halting for all exceptions

• Enables setting of all exception flags

• Sets rounding mode to round_to_nearest

ieee_cri_default_mode
• Clears all currently set exception flags

• Enables halting for overflow,
divide_by_zero, and invalid

• Disables halting for underflow and inexact

• Enables setting of all exception flags

• Sets rounding mode to round_to_nearest

8.13 Interoperability with C

8.13.1 Interoperability Between Fortran and C Entities

8.13.1.1 BIND(C) Syntax

The proc-language-binding-spec specification allows Fortran programs to
interoperate with C objects. The optional commas in SUBROUTINE name(),
BIND(C) and FUNCTION name(), BIND(C) are Cray extensions to the Fortran
standard.

S–3901–71 169

Cray Fortran Reference Manual

8.14 Coarrays
The Cray Fortran compiler implements coarrays as a mechanism for data exchange in
parallel programs.

Note: The Cray Fortran Compiler 7.1 release supports the proposed Fortran
2008 standard. The Fortran 2008 standard has not been formally adopted at this
time. Fortran 2008 feature implementations are based on the specifications in the
Committee Draft (ISO/IEC SC22/WG5/N1776) and are subject to modification in
the final standard.

Data passing has proven itself to be an effective method for programming
single-program-multiple-data (SPMD) parallel computation. Its chief advantage over
message passing is lower latency for data transfers, which leads to better scalability of
parallel applications. coarrays are a syntactic extension to the Fortran Language that
offers a method for programming data passing.

Data passing can also be accomplished by using the shared memory (SHMEM)
library routines. Using SHMEM, the program transfers data from an object on one
processing element to an object on another via subroutine calls. This technique is
often referred to as one-sided communication.

Coarrays provide an alternative syntax for specifying these transfers. With coarrays,
the concept of a processing element is replaced by the concept of an image. When
data objects are declared as coarrays, the corresponding coarrays on different images
can be referenced or defined in a fashion similar to the way in which arrays are
referenced or defined in Fortran. This is done by adding additional dimensions, or
co-dimensions, within brackets ([]) to an object's declarations and references.
These extra dimensions express the image upon which the object resides.

Coarrays offer the following advantages over SHMEM:

• Coarrays are syntax-based, so programs that use them can be analyzed and
optimized by the compiler. This offers greater opportunity for hiding data transfer
latency.

• Coarray syntax can eliminate the need to create and copy data to local temporary
arrays.

• Coarrays express data transfer naturally through the syntax of the language,
making the code more readable and maintainable.

• The unique bracket syntax allows you to scan for and to identify communication
in a program easily.

Consider the following SHMEM code fragment from a finite differencing algorithm:

CALL SHMEM_REAL_GET(T1, U, NROW, LEFT)
CALL SHMEM_REAL_GET(T2, U, NROW, RIGHT)
NU(1:NROW) = NU(1:NROW) + T1(1:NROW) + T2(1:NROW)

170 S–3901–71

Cray Fortran Language Extensions [8]

Coarrays can be used to express this fragment simply as:

NU(1:NROW) = NU(1:NROW) + U(1:NROW)[LEFT] + U(1:NROW)[RIGHT]

Notice that the resulting code is more concise, easier to read, and that the copies to
local temporary objects T1 and T2 are eliminated.

Coarrays can interoperate with the other message passing and data passing models.
This interoperability allows you to introduce coarrays gradually into codes that
presently use the Message Passing Interface (MPI) or SHMEM.

For more information about using coarrays, see ISO/IEC JTC1/SC22/W65
N1747, "Coarrays in the Next Fortran Standard," by John
Reid. This document can be accessed at the following location:
ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1747.pdf.

The nonstandard statements supported by Cray Fortran are summarized in this list.

CRITICAL Begin critical region

END CRITICAL

End of a critical region

SYNC ALL Synchronize all images

SYNC MEMORY

Memory barrier (same as GSYNC)

8.15 Compiling and Executing Programs Containing Coarrays
There are various commands, tools, and products available in the programming
environment to use for compiling and executing programs containing coarrays.

8.15.1 ftn and aprun Options Affecting Coarrays

The -h caf compiler option on the ftn command line must be specified in order
for coarray syntax to be recognized and translated. Otherwise, the coarray syntax
generates ERROR messages.

Upon execution of an a.out file that has been compiled and loaded with the -h
caf option, an image is created and executed on every processing element assigned
to the job. Images 1 through NUM_IMAGES are assigned to processing elements 0
through N$PES-1, consecutively.

You can set the number of processing elements assigned to a job at compile time
by specifying the -X option on the ftn command. The number of processing
elements can also be set at run time by executing the a.out file by using the aprun
command with the -n option specified.

S–3901–71 171

ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1747.pdf

Cray Fortran Reference Manual

Bounds checking is performed by specifying the -Rb option on the ftn command
line. This feature is not implemented for co-dimensions of coarrays.

For more information about the ftn and aprun commands, see the ftn(1) and
aprun(1) man pages.

8.15.2 Using the CrayTools Tool Set with Coarray Programs

The CrayTools tool set, which includes TotalView, and Cray performance analyzer
tool (CrayPat), does not contain special support for coarrays and does not support the
bracket notation. In most cases, however, these tools can still be used effectively to
analyze programs containing coarrays.

The following sections discuss issues related to the interaction of these tools with
programs containing coarrays.

8.15.2.1 Debugging Programs Containing Coarrays (Deferred implementation)

The totalview debugger does not support the bracket notation. Coarrays generally
appear as their corresponding local object with co-dimensions stripped off.

Coarray data can be viewed and referenced by switching the totalview Process
window to the processing element corresponding to the desired image and accessing
the coarray with local references.

8.15.2.2 Analyzing Coarray Program Performance

To the CrayTools performance tools, which include CrayPat, coarrays generally
appear as their corresponding local object with co-dimensions stripped off.

!
Caution: References to coarrays on different images appear to the performance
tools as local data references. This may skew the remote reference statistics of
these tools.

8.15.3 Interoperating with Other Message Passing and Data Passing
Models

Coarrays can interoperate with all other message and data passing models: MPI
and SHMEM. This allows you to introduce coarrays into existing application codes
incrementally.

These models are implemented through procedure calls, so the language interaction
between coarrays and these models is well defined.

!
Caution: MPI and SHMEM generally use processing element numbers, which
start at zero, but the coarray model generally deals with image numbers, which start
at one. For information about the mapping between processing elements and image
numbers, see ftn and aprun Options Affecting Coarrays on page 171.

172 S–3901–71

Cray Fortran Language Extensions [8]

Coarrays are symmetric for the purposes of SHMEM programming. Pointers in
coarrays of derived type, however, may not necessarily point to symmetric data.

For more information about the other message passing and data passing models, see
the following man pages.

• intro_mpi(3)

• intro_shmem(3)

8.15.4 Optimizing Programs with Coarrays

Programs containing coarrays benefit from all the usual steps you can take to improve
runtime performance of code that runs on a single image.

Loops containing references to coarrays can and should be vectorized. If a coarray
vector memory reference references multiple images, you may receive a "No Forward
Progress" exception. In this case, you should try vectorizing along a different
dimension of the coarray or running the application in accelerated mode (aprun
-A).

8.16 Submodules
As of release 7.1, the Cray Fortran Compiler fully supports submodules, which
extend specifications and definitions to other program units by use association and
stand in a tree-like relationship to other Fortran modules and submodules. There are
no known differences between the Cray implementation and the proposed standard.

Note: The Cray Fortran Compiler 7.1 release supports the proposed Fortran
2008 standard. The Fortran 2008 standard has not been formally adopted at this
time. Fortran 2008 feature implementations are based on the specifications in the
Committee Draft (ISO/IEC SC22/WG5/N1776) and are subject to modification in
the final standard.

S–3901–71 173

Cray Fortran Reference Manual

174 S–3901–71

Obsolete Features [9]

The Cray Fortran compiler supports legacy features to allow the continued use of
existing codes. In general, these features should not be used in new codes. The
obsolete features are divided into two groups. The first is the set of features identified
in Annex B of the Fortran standard as deleted. These were part of the Fortran
language but their usage is explicitly discouraged in new codes. The second group
is the set of legacy extensions supported in the Cray compiler for which preferred
alternatives now exist. The obsolete features and their preferred alternatives are
listed in Table 21.

Table 21. Obsolete Features and Preferred Alternatives

Obsolete feature Preferred alternative

IMPLICIT UNDEFINED IMPLICIT NONE

Type statements with *n Type statements with KIND= parameters

BYTE data type INTEGER(KIND=1)

DOUBLE COMPLEX statement COMPLEX statement with KIND parameter

STATIC attribute and statement SAVE attribute and statement

Slash data initialization Standard initialization syntax

DATA statement features Standard conforming DATA statements

Hollerith data Character data

PAUSE statement READ statement

ASSIGN, assigned GOTO statements and assigned
format specifiers

Standard branching constructs

Two-branch IF statements IF construct or statement

Real and double precision DO variables Integer DO variables

Nested loop termination Separate END DO statements

Branching into a block Restructure code

ENCODE and DECODE statements WRITE and READ with internal file

BUFFER IN and BUFFER OUT statements Asynchronous I/O statements

Asterisk character constant delimiters Use standard character delimiters

Negative-values X descriptor TL descriptor

S–3901–71 175

Cray Fortran Reference Manual

Obsolete feature Preferred alternative

A descriptor used for noncharacter conventional data
and R descriptor

Character type and other conventional matchings of
data and descriptors

H edit descriptor Character constants

Obsolete intrinsic procedures For list and replacements, see Obsolete Intrinsic
Procedures on page 193

Initialization using long strings Replace the numeric target with a character item.
Replace a Hollerith constant with a character
constant

9.1 IMPLICIT UNDEFINED

The Cray Fortran compiler accepts the IMPLICIT UNDEFINED statement. It is
equivalent to the IMPLICIT NONE statement.

9.2 Type Statement with *n

The Cray Fortran compiler defines the following additional forms of
type_declaration_stmt:

type_spec is INTEGER* length_value

or REAL* length_value

or DOUBLE PRECISION* length_value

or COMPLEX* length_value

or LOGICAL* length_value

• length-value is the size of the data object in bytes.

Data type declarations that include the data length are outmoded. The Cray Fortran
compiler recognizes this usage in type statements, IMPLICIT statements, and
FUNCTION statements, mapping these numbers onto kind values appropriate for
the target machine.

9.3 BYTE Data Type
The BYTE statement and data type declares a 1–byte value. This data type is
equivalent to the INTEGER(KIND=1) and INTEGER*1 declarations.

176 S–3901–71

Obsolete Features [9]

9.4 DOUBLE COMPLEX Statement
The DOUBLE COMPLEX statement is used to declare an item to be of type double
complex. The format for the DOUBLE COMPLEX statement is as follows:

DOUBLE COMPLEX [, attribute-list ::] entity-list

Items declared as DOUBLE COMPLEX contain two double precision entities.

When the -dp option is in effect, double complex entities are affected as follows:

• The nonstandard DOUBLE COMPLEX declaration is treated as a single-precision
complex type.

• Double precision intrinsic procedures are changed to the corresponding
single-precision intrinsic procedures.

The -ep or -dp specification is used for all source files compiled with a single
invocation of the Cray Fortran compiler command. If a module is compiled separately
from a program unit that uses the module, they both shall be compiled with the same
-ep or -dp specification.

9.5 STATIC Attribute and Statement
The STATIC attribute and statement provides the same effect as the SAVE attribute
and statement. Variables with the Cray Fortran STATIC attribute retain their value
and their definition, association, and allocation status after the subprogram in which
they are declared completes execution. Variables without this attribute cannot be
depended on to retain its value and status, although the Cray Fortran compiler treats
named common blocks as if they had this attribute. This attribute should always be
specified for an object or the object's common named block, if it is necessary for
the object to retain its value and status.

In Cray's implementation, the system retains the value of an object that is in a module
whether or not the STATIC specifier is used.

Objects declared in recursive subprograms can be given the attribute. Such objects are
shared by all instances of the subprogram.

Any object that is data initialized (in a DATA statement or a type declaration
statement) has the STATIC attribute by default.

The following is a format for a type declaration statement with the attribute:

type, STATIC [, attribute-list] :: entity-decl-list

static-stmt is STATIC [[::] static-entity-list]

static-entity is data-object-name

or / common-block-name /

S–3901–71 177

Cray Fortran Reference Manual

A statement without an entity list is treated as though it contained the names of all
items that could be saved in the scoping unit. The Cray Fortran compiler allows you
to insert multiple statements without entity lists in a scoping unit.

If STATIC appears in a main program as an attribute or a statement, it has no effect.

The following objects must not be saved:

• A procedure

• A function result

• A dummy argument

• A named constant

• An automatic data object

• An object in a common block

• A namelist group

A variable in a common block cannot be saved individually; the entire named
common block must be saved if you want any variables in it to be saved.

A named common block saved in one scoping unit of a program is saved throughout
the program.

If a named common block is specified in a main program, it is available to any
scoping unit of the program that specifies the named common block; it does not
need to be saved.

The statement also confers the attribute. It is subject to the same rules and restrictions
as the attribute.

The following example shows an entity-oriented declaration:

CHARACTER(LEN = 12), SAVE :: NAME
CHARACTER(LEN = 12), STATIC :: NAME

The following example shows an attribute-oriented declaration:

CHARACTER*12 NAME
STATIC NAME !Use SAVE OR STATIC, but not both on the same name

The following example shows saving objects and named common blocks:

STATIC A, B, /BLOCKA/, C, /BLOCKB/

178 S–3901–71

Obsolete Features [9]

9.6 Slash Data Initialization
The Fortran type declaration statements provide a means for data initialization. For
example, the following two methods are standard means for initializing integer data:

• Method 1:

INTEGER :: I=3

• Method 2:

INTEGER I
DATA I /3/

The Cray Fortran compiler supports an additional method for each data type. The
following example shows the additional, nonstandard method, used to define integer
data:

• Method 3:

INTEGER [::] I /3/

9.7 DATA Statement Features
The DATA statement has the following outmoded features:

• A constant need not exist for each element of a whole array named in a
data-stmt-object-list if the array is the last item in the list.

• A Hollerith or character constant can initialize more than one element of an
integer or single-precision real array if the array is specified without subscripts.

Example 1: If the -s default32 compiler option is used (default), an array
is declared by INTEGER A(2), the following DATA statements have the same
effect:

DATA A /'12345678'/
DATA A /'1234','5678'/

Example 2: If the -s default64 compiler option is specified, an array is
declared by INTEGER A(2), the following DATA statements have the same
effect:

DATA A /'1234567890123456'/
DATA A /'12345678','90123456'/

An integer or single-precision real array can be defined in the same way in a
DATA implied-DO statement.

9.8 Hollerith Data
Before the character data type was added to the Fortran 77 standard, Hollerith data
provided a method of supplying character data.

S–3901–71 179

Cray Fortran Reference Manual

9.8.1 Hollerith Constants

A Hollerith constant is expressed in one of three forms. The first of these is specified
as a nonzero integer constant followed by the letter H, L, or R and as many characters
as equal the value of the integer constant. The second form of Hollerith constant
specification delimits the character sequence between a pair of apostrophes followed
by the letter H, L, or R. The third form is like the second, except that quotation marks
replace apostrophes. For example:

Character sequence: ABC 12
Form 1: 6HABC 12
Form 2: 'ABC 12'H
Form 3: "ABC 12"H

Two adjacent apostrophes or quotation marks appearing between delimiting
apostrophes or quotation marks are interpreted and counted by the compiler as
a single apostrophe or quotation mark within the sequence. Thus, the sequence
DON'T USE "*" would be specified with apostrophe delimiters as 'DON''T USE
"*"'H, and with quotation mark delimiters as "DON'T USE ""*"""H.

Each character of a Hollerith constant is represented internally by an 8-bit code, with
up to 32 such codes allowed. This limit corresponds to the size of the largest numeric
type, COMPLEX(KIND = 16). The ultimate size and makeup of the Hollerith data
depends on the context. If the Hollerith constant is larger than the size of the type
implied by context, the constant is truncated to the appropriate size. If the Hollerith
constant is smaller than the size of the type implied by context, the constant is padded
with a character dependent on the Hollerith indicator. When an H Hollerith indicator
is used, the truncation and padding is done on the right end of the constant. The pad
character is the blank character code (20).

Null codes can be produced in place of blank codes by substituting the letter L for
the letter H in the Hollerith forms described above. The truncation and padding
is also done on the right end of the constant, with the null character code (00) as
the pad character.

Using the letter R instead of the letter H as the Hollerith indicator means truncation
and padding is done on the left end of the constant with the null character code (00)
used as the pad character.

All of the following Hollerith constants yield the same Hollerith constant and differ
only in specifying the content and placement of the unused portion of the single
64-bit entity containing the constant:

Hollerith Internal byte, beginning on bit:

constant 0 8 16 24 32 40 48 56

6HABCDEF A B C D E F 2016 2016

'ABCDEF'H A B C D E F 2016 2016

180 S–3901–71

Obsolete Features [9]

Hollerith Internal byte, beginning on bit:

constant 0 8 16 24 32 40 48 56

"ABCDEF" H A B C D E F 2016 2016

6LABCDEF A B C D E F 00 00

'ABCDEF'L A B C D E F 00 00

"ABCDEF"L A B C D E F 00 00

6RABCDEF 00 00 A B C D E F

'ABCDEF'R 00 00 A B C D E F

"ABCDEF"R 00 00 A B C D E F

A Hollerith constant is limited to 32 characters except when specified in a CALL
statement, a function argument list, or a DATA statement. An all-zero computer word
follows the last word containing a Hollerith constant specified as an actual argument
in an argument list.

A character constant of 32 or fewer characters is treated as if it were a Hollerith
constant in situations where a character constant is not allowed by the standard but a
Hollerith constant is allowed by the Cray Fortran compiler. If the character constant
appears in a DATA statement value list, it can be longer than 32 characters.

9.8.2 Hollerith Values

A Hollerith value is a Hollerith constant or a variable that contains Hollerith data. A
Hollerith value is limited to 32 characters.

A Hollerith value can be used in any operation in which a numeric constant can be
used. It can also appear on the right-hand side of an assignment statement in which
a numeric constant can be used. It is truncated or padded to be the correct size for
the type implied by the context.

9.8.3 Hollerith Relational Expressions

Used with a relational operator, the Hollerith value e1 is less than e2 if its value
precedes the value of e2 in the collating sequence and is greater if its value follows
the value of e2 in the collating sequence.

S–3901–71 181

Cray Fortran Reference Manual

The following examples are evaluated as true if the integer variable LOCK contains
the Hollerith characters K, E, and Y in that order and left-justified with five trailing
blank character codes:

3HKEY.EQ.LOCK
'KEY'.EQ.LOCK
LOCK.EQ.LOCK
'KEY1'.GT.LOCK
'KEY0'H.GT.LOCK

9.9 PAUSE Statement
Execution of a PAUSE statement requires operator or system-specific intervention
to resume execution. In most cases, the same functionality can be achieved as
effectively and in a more portable way with the use of an appropriate READ statement
that awaits some input data.

The execution of the PAUSE statement suspends the execution of a program. This is
now redundant, because a WRITE statement can be used to send a message to any
device, and a READ statement can be used to wait for and receive a message from the
same device.

The PAUSE statement is defined as follows:

pause-stmt is PAUSE [stop-code]

The character constant or list of digits identifying the PAUSE statement is called the
stop-code because it follows the same rules as those for the STOP statement's stop
code. The stop code is accessible following program suspension. The Cray Fortran
compiler sends the stop-code to the standard error file (stderr). The following are
examples of PAUSE statements:

PAUSE
PAUSE 'Wait #823'
PAUSE 100

9.10 ASSIGN, Assigned GO TO Statements, and Assigned
Format Specifiers

The ASSIGN statement assigns a statement label to an integer variable. During
program execution, the variable can be assigned labels of branch target statements,
providing a dynamic branching capability in a program. The unsatisfactory property
of these statements is that the integer variable name can be used to hold both a label
and an ordinary integer value, leading to errors that can be hard to discover and
programs that can be difficult to read.

182 S–3901–71

Obsolete Features [9]

A frequent use of the ASSIGN statement and assigned GO TO statement is to
simulate internal procedures, using the ASSIGN statement to record the return point
after a reusable block of code has completed. The internal procedure mechanism
of Fortran now provides this capability.

A second use of the ASSIGN statement is to simulate dynamic format specifications
by assigning labels corresponding to different format statements to an integer variable
and using this variable in I/O statements as a format specifier. This use can be
accomplished in a clearer way by using character strings as format specifications.
Thus, it is no longer necessary to use either the ASSIGN statement or the assigned
GO TO statement.

Execution of an ASSIGN statement causes the variable in the statement to become
defined with a statement label value.

When a numeric storage unit becomes defined, all associated numeric storage units of
the same type become defined. Variables associated with the variable in an ASSIGN
statement, however, become undefined as integers when the ASSIGN statement is
executed. When an entity of double precision real type becomes defined, all totally
associated entities of double precision real type become defined.

Execution of an ASSIGN statement causes the variable in the statement to become
undefined as an integer. Variables that are associated with the variable also become
undefined.

9.10.1 Form of the ASSIGN and Assigned GO TO Statements

Execution of an ASSIGN statement assigns a label to an integer variable.
Subsequently, this value can be used by an assigned GO TO statement or by an I/O
statement to reference a FORMAT statement. The ASSIGN statement is defined as
follows:

assign-stmt is ASSIGN label TO scalar-int-variable

The term default integer type in this section means that the integer variable
shall occupy a full word in order to be able to hold the address of the statement
label. Programs that contain an ASSIGN statement and are compiled with
-s default32 shall ensure that the scalar-int-variable is declared as
INTEGER(KIND=8). This ensures that it occupies a full word.

The variable shall be a named variable of default integer type. It shall not be an array
element, an integer component of a structure, or an object of nondefault integer type.

The label shall be the label of a branch target statement or the label of a FORMAT
statement in the same scoping unit as the ASSIGN statement.

When defined with an integer value, the integer variable cannot be used as a label.

S–3901–71 183

Cray Fortran Reference Manual

When assigned a label, the integer variable cannot be used as anything other than a
label.

When the integer variable is used in an assigned GO TO statement, it shall be
assigned a label.

As the following example shows, the variable can be redefined during program
execution with either another label or an integer value:

ASSIGN 100 TO K

Execution of the assigned GO TO statement causes a transfer of control to the branch
target statement with the label that had previously been assigned to the integer
variable.

The assigned GO TO statement is defined as follows:

assigned-goto-stmt is GO TO scalar-int-variable [[,] (label-list)]

The variable shall be a named variable of default integer type. That is, it shall not be
an array element, a component of a structure, or an object of nondefault integer type.

The variable shall be assigned the label of a branch target statement in the same
scoping unit as the assigned GO TO statement.

If a label list appears, such as in the following examples, the variable shall have been
assigned a label value that is in the list:

GO TO K
GO TO K (10, 20, 100)

The ASSIGN statement also allows the label of a FORMAT statement to be
dynamically assigned to an integer variable, which can later be used as a format
specifier in READ, WRITE, or PRINT statements. This hinders readability, permits
inconsistent usage of the integer variable, and can be an obscure source of error.

This functionality is available through character variables, arrays, and constants.

9.10.2 Assigned Format Specifiers

When an I/O statement containing the integer variable as a format specifier is
executed, the integer variable can be defined with the label of a FORMAT specifier.

9.11 Two-branch IF Statements
Outmoded IF statements are the two-branch arithmetic IF and the indirect logical
IF.

184 S–3901–71

Obsolete Features [9]

9.11.1 Two-branch Arithmetic IF

A two-branch arithmetic IF statement transfers control to statement s1 if expression
e is evaluated as nonzero or to statement s2 if e is zero. The arithmetic expression
should be replaced with a relational expression, and the statement should be changed
to an IF statement or an IF construct. This format is as follows:

IF (e) s1, s2

e Integer, real, or double precision expression

s Label of an executable statement in the same program unit

Example:

IF (I+J*K) 100,101

9.11.2 Indirect Logical IF

An indirect logical IF statement transfers control to statement st if logical expression
le is true and to statement sf if le is false. An IF construct or an IF statement should
be used in place of this outmoded statement. This format is as follows:

IF (le) st, sf

le Logical expression

st, sf Labels of executable statements in the same program unit

Example:

IF(X.GE.Y)148,9999

9.12 Real and Double Precision DO Variables
The Cray Fortran compiler allows real variables and values as the DO variable and
limits in DO statements. The preferred alternative is to use integer values and compute
the desired real value.

9.13 Nested Loop Termination
Older Cray Fortran compilers allowed nested DO loops to terminate on a single
END DO statement if the END DO statement had a statement label. The END DO
statement is included in the Fortran standard. The Fortran standard specifies that a
separate END DO statement shall be used to terminate each DO loop, so allowing
nested DO loops to end on a single, labeled END DO statement is an outmoded
feature.

S–3901–71 185

Cray Fortran Reference Manual

9.14 Branching into a Block
Although the standard does not permit branching into the code block for a DO
construct from outside of that construct, the Cray Fortran compiler permits branching
into the code block for a DO or DO WHILE construct. By default, the Cray Fortran
compiler issues an error for this situation. Cray does not recommend branching into a
DO construct, but if you specify the ftn -eg command, the code will compile.

9.15 ENCODE and DECODE Statements
A formatted I/O operation defines entities by transferring data between I/O list items
and records of a file. The file can be on an external media or in internal storage.

The Fortran standard provides READ and WRITE statements for both formatted
external and internal file I/O. This is the preferred method for formatted internal file
I/O. It is the only method for list-directed internal file I/O.

The ENCODE and DECODE statements are an alternative to standard Fortran READ
and WRITE statements for formatted internal file I/O.

An internal file in standard Fortran I/O shall be declared as character, while the
internal file in ENCODE and DECODE statements can be any data type. A record
in an internal file in standard Fortran I/O is either a scalar character variable or an
array element of a character array. The record size in an internal file in an ENCODE
or DECODE statement is independent of the storage size of the variable used as the
internal file. If the internal file is a character array in standard Fortran I/O, multiple
records can be read or written with internal file I/O. The alternative form does not
provide the multiple record capability.

9.15.1 ENCODE Statement

The ENCODE statement provides a method of converting or encoding the internal
representation of the entities in the output list to a character representation. The
format of the ENCODE statement is as follows:

ENCODE (n, f, dest) [elist]

n Number of characters to be processed. Nonzero integer expression
not to exceed the maximum record length for formatted records. This
is the record size for the internal file.

f Format identifier. It cannot be an asterisk.

dest Name of internal file. It can be a variable or array of any data type.
It cannot be an array section, a zero-sized array, or a zero-sized
character variable.

elist Output list to be converted to character during the ENCODE
statement.

186 S–3901–71

Obsolete Features [9]

The output list items are converted using format f to produce a sequence of n
characters that are stored in the internal file dest. The n characters are packed 8
characters per word.

An ENCODE statement transfers one record of length n to the internal file dest. If
format f attempts to write a second record, ENCODE processing repositions the
current record position to the beginning of the internal file and begins writing at that
position.

An error is issued when the ENCODE statement attempts to write more than n
characters to the record of the internal file. If dest is a noncharacter entity and n is not
a multiple of 8, the last word of the record is padded with blanks to a word boundary.
If dest is a character entity, the last word of the record is not padded with blanks to
a word boundary.

Example 1: The following example assumes a machine word length of 64 bits and
uses the underscore character (_) as a blank:

INTEGER ZD(5), ZE(3)
ZD(1)='THIS____'
ZD(2)='MUST____'
ZD(3)='HAVE____'
ZD(4)='FOUR____'
ZD(5)='CHAR____'

1 FORMAT(5A4)
ENCODE(20,1,ZE)ZD
DO 10 I=1,3

PRINT 2,'ZE(',I,')="',ZE(I),'"'
10 CONTINUE
2 FORMAT(A,I2,A,A8,A)

END

The output is as follows:

>ZE(1)="THISMUST"
>ZE(2)="HAVEFOUR"
>ZE(3)="CHAR____"

9.15.2 DECODE Statement

The DECODE statement provides a method of converting or decoding from a character
representation to the internal representation of the entities in the input list. The format
of the DECODE statement is as follows:

DECODE (n, f, source) [dlist]

n Number of characters to be processed. Nonzero integer expression
not to exceed the maximum record length for formatted records. This
is the record size for the internal file.

f Format identifier. It cannot be an asterisk.

S–3901–71 187

Cray Fortran Reference Manual

source Name of internal file. It can be a variable or array of any data type.
It cannot be an array section or a zero-sized array or a zero-sized
character variable.

dlist Input list to be converted from character during the DECODE
statement.

The input list items are converted using format f from a sequence of n characters
in the internal file source to an internal representation and stored in the input list
entities. If the internal file source is noncharacter, the internal file is assumed to be a
multiple of 8 characters.

Example 1: An example of a DECODE statement is as follows:

INTEGER ZD(4), ZE(3)
ZE(1)='WHILETHI'
ZE(2)='S HAS F'
ZE(3)='IVE '

3 FORMAT(4A5)
DECODE(20,3,ZE)ZD
DO 10 I=1,4

PRINT 2,'ZD(',I,')="',ZD(I),'"'
10 CONTINUE
2 FORMAT(A,I2,A,A8,A)

END

The output is as follows:

>ZD(1)="WHILE "
>ZD(2)="THIS "
>ZD(3)="HAS "
>ZD(4)="FIVE "

9.16 BUFFER IN and BUFFER OUT Statements
You can use the BUFFER IN and BUFFER OUT statements to transfer data.

Data can be transferred while allowing the subsequent execution sequence to proceed
concurrently. This is called asynchronous I/O. Asynchronous I/O may require the use
of nondefault file formats or FFIO layers, as discussed in Chapter 13, Using Flexible
File I/O (FFIO) on page 233. BUFFER IN and BUFFER OUT operations may
proceed concurrently on several units or files. If they do not proceed asynchronously,
they will use synchronous I/O.

BUFFER IN is for reading, and BUFFER OUT is for writing. A BUFFER IN or
BUFFER OUT operation includes only data from a single array or a single common
block.

188 S–3901–71

Obsolete Features [9]

Either statement initiates a data transfer between a specified file or unit (at the
current record) and memory. If the unit or file is completing an operation initiated
by any earlier BUFFER IN or BUFFER OUT statement, the current BUFFER
IN or BUFFER OUT statement suspends the execution sequence until the earlier
operation is complete. When the unit's preceding operation terminates, execution of
the BUFFER IN or BUFFER OUT statement completes as if no delay had occurred.

You can use the UNIT(3i) or LENGTH(3i) intrinsic procedures to delay the
execution sequence until the BUFFER IN or BUFFER OUT operation is complete.
These functions can also return information about the I/O operation at its termination.

The general format of the BUFFER IN and BUFFER OUT statements follows:

buffer_in_stmt is BUFFER IN (id, mode) (start_loc, end_loc)

buffer_out_stmt is BUFFER OUT (id, mode) (start_loc, end_loc)

io_unit is external_file_unit

or file_name_expr

mode is scalar_integer_expr

start_loc is variable

end_loc is variable

In the preceding definition, the variable specified for start_loc and end_loc cannot
be of a derived type if you are performing implicit data conversion. The data items
between start_loc and end_loc must be of the same type.

The BUFFER IN and BUFFER OUT statements are defined as follows.

BUFFER IN (io_unit, mode) (start_loc, end_loc)

BUFFER OUT (io_unit, mode) (start_loc, end_loc)

io_unit An identifier that specifies a unit. The I/O unit is a scalar integer
expression with a nonnegative value, an asterisk (*), or a character
literal constant (external name). The I/O unit forms indicate that the
unit is a formatted sequential access external unit.

mode Mode identifier. This integer expression controls the record position
following the data transfer. The mode identifier is ignored on files
that do not contain records; only full record processing is available.

S–3901–71 189

Cray Fortran Reference Manual

start_loc, end_loc

Symbolic names of the variables, arrays, or array elements that
mark the beginning and ending locations of the BUFFER IN or
BUFFER OUT operation. These names must be either elements of
a single array (or equivalenced to an array) or members of the same
common block. If start_loc or end_loc is of type character, then both
must be of type character. If start_loc and end_loc are noncharacter,
then the item length of each must be equal.

For example, if the internal length of the data type of start_loc is 64
bits, the internal length of the data type of end_loc must be 64 bits.
To ensure that the size of start_loc and end_loc are the same, use the
same data type for both.

The mode identifier, mode, controls the position of the record at unit io_unit after the
data transfer is complete. The values of mode have the following effects:

• Specifying mode ≥ 0 causes full record processing. File and record positioning
works as with conventional I/O. The record position following such a transfer is
always between the current record (the record with which the transfer occurred)
and the next record. Specifying BUFFER OUT with mode ≥ 0 ends a series of
partial-record transfers.

• Specifying mode < 0 causes partial record processing. In BUFFER IN, the
record is positioned to transfer its (n +1)th word if the nth word was the last
transferred. In BUFFER OUT, the record is left positioned to receive additional
words.

The amount of data to be transferred is specified in words without regard to types or
formats. However, the data type of end_loc affects the exact ending location of a
transfer. If end_loc is of a multiple-word data type, the location of the last word in its
multiple-word form of representation marks the ending location of the data transfer.

BUFFER OUT with start_loc = end_loc + 1 and mode ≥ 0 causes a zero-word
transfer and concludes the record being created. Except for terminating a partial
record, start_loc following end_loc in a storage sequence causes a runtime error.

Example:

PROGRAM XFR
DIMENSION A(1000), B(2,10,100), C(500)
...
BUFFER IN(32,0) (A(1),A(1000))
...
DO 9 J=1,100
B(1,1,J) = B(1,1,J) + B(2,1,J)

9 CONTINUE
BUFFER IN(32,0) (C(1),C(500))
BUFFER OUT(22,0) (A(1),A(1000))
...
END

190 S–3901–71

Obsolete Features [9]

The first BUFFER IN statement in this example initiates a transfer of 1000 words
from unit 32. If asynchronous I/O is available, processing unrelated to that transfer
proceeds. When this is complete, a second BUFFER IN is encountered, which
causes a delay in the execution sequence until the last of the 1000 words is received.
A transfer of another 500 words is initiated from unit 32 as the execution sequence
continues. BUFFER OUT begins a transfer of the first 1000 words to unit 22. In all
cases mode = 0, indicating full record processing.

9.17 Asterisk Delimiters
The asterisk was allowed to delimit a literal character constant. It has been replaced
by the apostrophe and quotation mark.

h1 h2 ... hn

* Delimiter for a literal character string

h Any ASCII character indicated by a C that is capable of internal
representation

Example:

AN ASTERISK EDIT DESCRIPTOR

9.18 Negative-valued X Descriptor
A negative value could be used with the X descriptor to indicate a move to the left.
This has been replaced by the TL descriptor.

[-b]X

b Any nonzero, unsigned integer constant

X Indicates a move of as many positions as indicated by b

Example:

-55X ! Moves current position 55 spaces left

9.19 A and R Descriptors for Noncharacter Types
The Rw descriptor and the use of the Aw descriptor for noncharacter data are available
primarily for programs that were written before a true character type was available.
Other uses include adding labels to binary files and the transfer of data whose type is
not known in advance.

List items can be of type real, integer, complex, or logical. For character use, the
binary form of the data is converted to or from ASCII codes. The numeric list item is
assumed to contain ASCII characters when used with these edit descriptors.

S–3901–71 191

Cray Fortran Reference Manual

Complex items use two storage units and require two A descriptors, for the first and
second storage units respectively.

The Aw descriptor works with noncharacter list items containing character data in
essentially the same way as described in the Fortran standard. The Rw descriptor
works like Aw with the following exceptions:

• Characters in an incompletely filled input list item are right-justified with the
remainder of that list item containing binary zeros.

• Partial output of an output list item is from its rightmost character positions.

The following example shows the Aw and Rw edit descriptors for noncharacter data
types:

INTEGER IA
LOGICAL LA
REAL RA
DOUBLE PRECISION DA
COMPLEX CA
CHARACTER*52 CHC
CHC='ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
READ(CHC,3) IA, LA, RA, DA, CA

3 FORMAT(A4,A8,A10,A17,A7,A6)
PRINT 4, IA, LA, RA, DA, CA

4 FORMAT(1x,3(A8,'-'),A16,'-',2A8)
READ(CHC,5) IA, LA, RA

5 FORMAT(R2,R8,R9)
PRINT 4, IA, LA, RA
END

The output of this program would be as follows:

> ABCD -EFGHIJKL-OPQRSTUV-XYZabcdefghijklm-nopqrst uvwxyz
> ooooooAB-CDEFGHIJ-LMNOPQRS-

The arrow (>) indicates leading blanks in the use of the A edit descriptor. The
lowercase letter o is used to indicate where binary zeros have been written with the
R edit descriptor.

The binary zeros are not printable characters, so the printed output simply contains
the characters without the binary zeros.

9.20 H Edit Descriptor
This edit descriptor can be a source of error because the number of characters
following the descriptor can be miscounted easily. The same functionality is available
using the character constant edit descriptor, for which no count is required.

192 S–3901–71

Obsolete Features [9]

The following information pertains to the H edit descriptor:

Table 22. Summary of String Edit Descriptors

Descriptor Description

H Transfer of text character to output record

'text' Transfer of a character literal constant to output record

"text" Transfer of a character literal constant to output record

9.21 Obsolete Intrinsic Procedures
The Cray Fortran compiler supports many intrinsic procedures that have been used in
legacy codes, but that are now obsolete. The following table indicates the obsolete
procedures and the preferred alternatives. For more information about a particular
procedure, see its man page.

Table 23. Obsolete Procedures and Alternatives

Obsolete Intrinsic Procedure Preferred Alternative

AND IAND

BITEST BTEST

BJTEST BTEST

BKTEST BTEST

CDABS ABS

CDCOS COS

CDEXP EXP

CDLOG LOG

CDSIN SIN

CDSQRT SQRT

CLOC LOC or C_LOC

COMPL NOT

COTAN COT

CQABS ABS

CQDEXP EXP

CQSIN SIN

CQSQRT SQRT

CSMG MERGE

S–3901–71 193

Cray Fortran Reference Manual

Obsolete Intrinsic Procedure Preferred Alternative

CVMGM MERGE

CVMGN MERGE

CVMGP MERGE

CVMGZ MERGE

CVMGT MERGE

DACOSD ACOSD

DASIND ASIND

DATAN2D ATAN2D

DATAND ATAND

DCMPLX CMPLX

DCONJG CONJG

DCOSD COSD

DCOT COT

DCOTAN COT

DFLOAT REAL

DFLOATI REAL

DFLOATJ REAL

DFLOATK REAL

DIMAG AIMAG

DREAL REAL

DSIND SIND

DTAND TAND

EQV NOT, IEOR

FCD (none)

FLOATI REAL

FLOATJ REAL

FLOATK REAL

FP_CLASS IEEE_CLASS

IDATE DATE_AND_TIME

IEEE_REAL REAL

IIABS ABS

IIAND IAND

IIBCHNG IBCHNG

194 S–3901–71

Obsolete Features [9]

Obsolete Intrinsic Procedure Preferred Alternative

IIBCLR IBCLR

IIBITS IBITS

IIBSET IBSET

IIEOR IEOR

IIDIM DIM

IIDINT INT

IIFIX INT

IINT INT

IIOR IOR

IIQINT INT

IISHA SHIFTA

IISHC ISHFT

IISHFT ISHFTC

IISHFTC ISHFTC

IISHL ISHFT

IISIGN SIGN

IMAG AIMAG

IMOD MOD

ININT NINT

INT2 INT

INT4 INT

INT8 INT

INOT NOT

IQNINT NINT

IRTC SYSTEM_CLOCK

ISHA SHIFTA

ISHC ISHFTC

ISHL IEEE_IS_NAN

JDATE DATE_AND_TIME

JFIX INT

JIABS ABS

JIAND IAND

JIBCHNG IBCHNG

S–3901–71 195

Cray Fortran Reference Manual

Obsolete Intrinsic Procedure Preferred Alternative

JIBCLR IBCLR

JIBITS IBITS

JIBSET IBSET

JIEOR IEOR

JIDIM DIM

JIDINT INT

JIFIX INT

JINT INT

JIOR IOR

JIQINT INT

JISHA SHIFTA

JISHC ISHFTC

JISHFT ISHFT

JISHFTC ISHFTC

JISHL ISHFT

JISIGN SIGN

JMOD MOD

JNINT NINT

JNOT NOT

KIABS ABS

KIAND IAND

KIBCHNG IBCHNG

KIBCLR IBCLR

KIBITS IBITS

KIBSET IBSET

KIEOR IEOR

KIDIM DIM

KIDINT INT

KINT INT

KIOR IOR

KIQINT INT

KISHA SHIFTA

KISHC ISHFTC

196 S–3901–71

Obsolete Features [9]

Obsolete Intrinsic Procedure Preferred Alternative

KISHFT ISHFT

KISHFTC ISHFTC

KISHL ISHFT

KISIGN SIGN

KMOD MOD

KNINT NINT

KNOT NOT

LENGTH (none)

LONG INT

LSHIFT ISHFT or SHIFTL

MY_PE THIS_IMAGE

MEMORY_BARRIER SYNC MEMORY

NEQV IEOR

OR IOR

QABS ABS

QACOS ACOS

QACOSD ACOSD

QASIN ASIN

QASIND ASIND

QATAN ATAN

QATAN2 ATAN2

DATAN2D ATAN2D

QATAND ATAND

QCMPLX CMPLX

QCONJG CONJG

QCOS COS

QCOSD COSD

QCOSH COSH

QCOT COT

QCOTAN COT

QDIM DIM

QEXP EXP

QEXT REAL

S–3901–71 197

Cray Fortran Reference Manual

Obsolete Intrinsic Procedure Preferred Alternative

QFLOAT REAL

QFLOATI REAL

QFLOATJ REAL

QFLOATJ REAL

QFLOATK REAL

QIMAG AIMAG

QINT AINT

QLOG LOG

QLOG10 LOG10

QMAX1 MAX

QMIN1 MIN

QMOD MOD

QNINT ANINT

QREAL REAL

QSIGN SIGN

QSIN SIN

QSIND SIND

QSINH SINH

QSQRT SQRT

QTAN TAN

QTAND TAND

QTANH TANH

RAN RANDOM_NUMBER

RANF RANDOM_NUMBER

RANGET RANDOM_SEED

RANSET RANDOM_SEED

REMOTE_WRITE_BARRIER SYNC MEMORY

RSHIFT ISHFT or SHIFTR

RTC SYSTEM_CLOCK

SECNDS CPU_TIME

SHIFT ISHFTC

SHORT INT

SNGLQ REAL

198 S–3901–71

Obsolete Features [9]

Obsolete Intrinsic Procedure Preferred Alternative

TIME DATE_AND_TIME

UNIT WAIT

WRITE_MEMORY_BARRIER SYNC MEMORY

XOR IEOR

S–3901–71 199

Cray Fortran Reference Manual

200 S–3901–71

Cray Fortran Deferred Implementation and
Optional Features [10]

This release of the Cray Fortran compiler supports the Fortran 2003 standard, with
the following exceptions.

10.1 ISO_10646 Character Set
The Fortran 2003 features related to supporting the ISO_10646 character set are not
supported. This includes declarations, constants, and operations on variables of
character(kind=4) and I/O operations.

10.2 Restrictions on Unlimited Polymorphic Variables
If the -e h option is specified to cause packed storage for short integers and
logicals, unlimited polymorphic variables whose dynamic types are integer(1),
integer(2), logical(1), or logical(2) are not supported.

10.3 ENCODING= in I/O Statements
The ENCODING= specifier in I/O statements is accepted by the compiler but has
no effect.

10.4 Allocatable Assignment (Optionally Enabled)
The Fortran 2003 standard allows an allocatable variable in an intrinsic assignment
statement (variable = expression) to have a shape different from the
expression. If the shapes are different, the variable is automatically deallocated and
reallocated with the shape of the expression. This feature is available in the CCE
7.1 Cray Fortran compiler but is not enabled by default because of potential adverse
effects on performance. The new behavior is enabled by the -e w command line
option.

S–3901–71 201

Cray Fortran Reference Manual

202 S–3901–71

Cray Fortran Implementation Specifics [11]

The Fortran standard specifies the rules for writing a standard conforming Fortran
program. Many of the details of how such a program is compiled and executed are
intentionally not specified or are explicitly specified as being processor-dependent.
This chapter describes the implementation used by the Cray Fortran compiler.
Included are descriptions of the internal representations used for data objects and the
values of processor-dependent language parameters.

11.1 Companion Processor
For the purpose of C interoperability, the Fortran standard refers to a "companion
processor." The companion processor for the Cray Fortran compiler is the Cray C
compiler.

11.2 INCLUDE Line
There is no limit to the nesting level for INCLUDE lines. The character literal
constant in an INCLUDE line is interpreted as the name of the file to be included.
This case-sensitive name may be prefixed with additional characters based on the -I
compiler command line option.

11.3 INTEGER Kinds and Values
INTEGER kind type parameters of 1, 2, 4, and 8 are supported. The default kind
type parameter is 4 unless the -s default64 or -s integer64 command
line option is specified, in which case the default kind type parameter is 8. The
interpretation of kinds 1 and 2 depend on whether the -e h command line option is
specified. Integer values are represented as two's complement binary values.

11.4 REAL Kinds and Values
REAL kind type parameters of 4 and 8 are supported. The default kind type parameter
is 4 unless the -s default64 or -s real64 command lines option is specified,
in which case, the default kind type parameter is 8. Real values are represented in
the format specified by the IEEE 754 standard, with kinds 4 and 8 corresponding to
the 32 and 64 bit IEEE representations.

S–3901–71 203

Cray Fortran Reference Manual

11.5 DOUBLE PRECISION Kinds and Values
The DOUBLE PRECISION type is an alternate specification of a REAL type. The
kind type parameter of that REAL type is twice the value of the kind type parameter
for default REAL unless the -sdefault64 or -sreal64 command line options
are specified, in which case, the kind type parameter for DOUBLE PRECISION
and default REAL are the same, and REAL constants with a D exponent are treated
as if the D were an E. Note that if the -sdefault64 or -sreal64 options are
specified, the compiler is not standard conforming.

11.6 LOGICAL Kinds and Values
LOGICAL kind type parameters of 1, 2, 4, and 8 are supported. The default kind
type parameter is 4 unless the -s default64 or -s integer64 command
line option is specified, in which case, the default kind type parameter is 8. The
interpretation of kinds 1 and 2 depend on whether the -e h command line option is
specified. Logical values are represented by a bit sequence in which the low order
bit is set to 1 for the value .true. and to 0 for .false., and the other bits in
the representation are set to 0.

11.7 CHARACTER Kinds and Values
The CHARACTER kind type parameter of 1 is supported. The default kind type
parameter is 1. Character values are represented using the 8-bit ASCII character
encoding.

11.8 Cray Pointers
Cray pointers are 64-bit objects.

11.9 ENUM Kind
An enumerator that specifies the BIND(C) attribute creates values with a kind type
parameter of 4.

11.10 Storage Issues
This section describes how the Cray Fortran compiler uses storage, including how this
compiler accommodates programs that use overindexing of blank common.

204 S–3901–71

Cray Fortran Implementation Specifics [11]

11.10.1 Storage Units and Sequences

The size of the numeric storage units is 32 bits, unless the -s default64 option
is specified, in which case the numeric storage unit is 64 bits. If the -s real64
or -s integer64option is specified alone, or the -dp is specified in addition
to -s default64 or -s real64, the relative sizes of the storage assigned for
default intrinsic types do not conform to the standard. In this case, storage sequence
associations involving variables declared with default intrinsic noncharacter types
may be invalid and should be avoided.

11.10.2 Static and Stack Storage

The Cray Fortran compiler allocates variables to storage according to the following
criteria:

• Variables in common blocks are always allocated in the order in which they
appear in COMMON statements.

• Data in modules are statically allocated.

• User variables that are defined or referenced in a program unit, and that also
appear in SAVE or DATA statements, are allocated to static storage, but not
necessarily in the order shown in your source program.

• Other referenced user variables are assigned to the stack. If -ev is specified on
the Cray Fortran compiler command line, referenced variables are allocated to
static storage. This allocation does not necessarily depend on the order in which
the variables appear in your source program.

S–3901–71 205

Cray Fortran Reference Manual

• Compiler-generated variables are assigned to a register or to memory (to the stack
or heap), depending on how the variable is used. Compiler-generated variables
include DO-loop trip counts, dummy argument addresses, temporaries used in
expression evaluation, argument lists, and variables storing adjustable dimension
bounds at entries.

• Automatic objects may be allocated to either the stack or to the heap, depending
on how much stack space is available when the objects are allocated.

• Heap or stack allocation can be used for TASK COMMON variables and
some compiler-generated temporary data such as automatic arrays and array
temporaries.

• Unsaved variables may be assigned to a register by optimization and not allocated
storage.

• Unreferenced user variables not appearing in COMMON statements are not
allocated storage.

11.10.3 Dynamic Memory Allocation

Many FORTRAN 77 programs contain a memory allocation scheme that expands an
array in a common block located in central memory at the end of the program. This
practice of expanding a blank common block or expanding a dynamic common block
(sometimes referred to as overindexing) causes conflicts between user management of
memory and the dynamic memory requirements of CLE libraries. It is recommended
that you modify programs rather than expand blank common blocks, particularly
when migrating from other environments.

Figure 2 shows the structure of a program under the CLE operating systems in
relation to expanding a blank common block. In both figures, the user area includes
code, data, and common blocks.

206 S–3901–71

Cray Fortran Implementation Specifics [11]

Figure 2. Memory Use

Heap

User
area

Without an expandable
common block:

Heap

User
area

With an expandable
common block:

Dynamic
area

Address 0

11.11 Finalization
A finalizable object in a module is not finalized in the event that there is no longer
any active procedure referencing the module.

A finalizable object that is allocated via pointer allocation is not finalized in the event
that it later becomes unreachable due to all pointers to that object having their pointer
association status changed.

11.12 ALLOCATE Error Status
If an error occurs during the execution of an ALLOCATE statement with a stat=
specifier, subsequent items in the allocation list are not allocated.

11.13 DEALLOCATE Error Status
If an error occurs during the execution of an DEALLOCATE statement with a stat=
specifier, subsequent items in the deallocation list are not deallocated.

11.14 ALLOCATABLE Module Variable Status
An unsaved allocatable module variable remains allocated if it is allocated when the
execution of an END or RETURN statement results in no active program unit having
access to the module.

S–3901–71 207

Cray Fortran Reference Manual

11.15 Kind of a Logical Expression
For an expression such as x1 op x2 where op is a logical intrinsic binary operator
and the operands are of type logical with different kind type parameters, the kind type
parameter of the result is the larger kind type parameter of the operands.

11.16 STOP Code Availability
If a STOP code is specified in a STOP statement, its value is output to stderr when
the STOP statement is executed.

11.17 Stream File Record Structure and Position
A formatted file written with stream access may be later read as a record file. In that
case, embedded newline characters (char(10)) indicate the end of a record and the
terminating newline character is not considered part of the record.

The file storage unit for a formatted stream file is a byte. The position is the ordinal
byte number in the file; the first byte is position 1. Positions corresponding to newline
characters (char(10)) that were inserted by the I/O library as part of record output
do not correspond to positions of user-written data.

11.18 File Unit Numbers
The values of INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT defined in the
ISO_Fortran_env module are 100, 101, and 102, respectively. These three unit
numbers are reserved and may not be used for other purposes. The files connected to
these units are the same files used by the companion C processor for standard input
(stdin), output (stdout), and error (stderr). An asterisk (*) specified as the
unit for a READ statement specifies unit 100. An asterisk specified as the unit for a
WRITE statement, and the unit for PRINT statements is unit 101. All positive default
integer values are available for use as unit numbers.

11.19 OPEN Specifiers
If the ACTION= specifier is omitted from an OPEN statement, the default value is
determined by the protections associated with the file. If both reading and writing are
permitted, the default value is READWRITE.

If the ENCODING= specifier is omitted or specified as DEFAULT in an OPEN
statement for a formatted file, the encoding used is ASCII.

The case of the name specified in a FILE= specifier in an OPEN statement is
significant.

If the FILE= specifier is omitted, fort. is prepended to the unit number.

208 S–3901–71

Cray Fortran Implementation Specifics [11]

If the RECL= specifier is omitted from an OPEN statement for a sequential access file,
the default value for the maximum record length is 1024.

If the file is connected for unformatted I/O, the length is measured in 8-bit bytes.

The FORM= specifier may also be SYSTEM for unformatted files.

If the ROUND= specifier is omitted from an OPEN statement, the default value is
NEAREST. Specifying a value of PROCESSOR_DEFINED is equivalent to specifying
NEAREST.

If the STATUS= specifier is omitted or specified as UNKNOWN in an OPEN statement,
the specification is equivalent to OLD if the file exists, otherwise, it is equivalent to
NEW.

11.20 FLUSH Statement
Execution of a FLUSH statement causes memory resident buffers to be flushed
to the physical file. Output to the unit specified by ERROR_UNIT in the
ISO_Fortran_env module is never buffered; execution of FLUSH on that unit
has no effect.

11.21 Asynchronous I/O
The ASYNCHRONOUS= specifier may be set to YES to allow asynchronous I/O for
a unit or file.

Asynchronous I/O is used if the FFIO layer attached to the file provides asynchronous
access.

11.22 REAL I/O of an IEEE NaN
An IEEE NaN may be used as an I/O value for the F, E, D, or G edit descriptor or
for list-directed or namelist I/O.

11.22.1 Input of an IEEE NaN

The form of NaN is an optional sign followed by the string 'NAN' optionally followed
by a hexadecimal digit string enclosed in parentheses. The input is case insensitive.
Some examples are:

NaN - quiet NaN
nAN() - quiet NaN
-nan(ffffffff) - quiet NaN
NAn(7f800001) - signalling NaN
NaN(ffc00001) - quiet NaN
NaN(ff800001) - signalling NaN

S–3901–71 209

Cray Fortran Reference Manual

The internal value for the NaN will become a quiet NaN if the hexadecimal string is
not present or is not a valid NaN.

A '+' or '-' preceding the NaN on input will be used as the high order bit of the
corresponding READ input list item. An explicit sign overrides the sign bit from the
hexadecimal string. The internal value becomes the hexadecimal string if it represents
an IEEE NaN in the internal data type. Otherwise, the form of the internal value
is undefined.

11.22.2 Output of an IEEE NaN

The form of an IEEE NaN for the F, E, D, or G edit descriptor or for list-directed or
namelist output is:

1. If the field width w is absent, zero, or greater than (5 + 1/4 of the size of the
internal value in bits), the output consists of the string 'NaN' followed by the
hexadecimal representation of the internal value within a set of parentheses. An
example of the output field is:

NaN(7fc00000)

2. If the field width w is at least 3 but less than (5 + 1/4 of the size of the internal
value in bits), the string 'NaN' will be right-justified in the field with blank fill on
the left.

3. If the field width w is 1 or 2, the field is filled with asterisks.

The output field has no '+' or '-'; the sign is contained in the hexadecimal string.

To get the same internal value for a NaN, write it with a list-directed write statement
and read it with a list-directed read statement.

To write and then read the same NaN, the field width w in D, E, F, or G must be at
least the number of hexadecimal digits of the internal datum plus 5.

REAL(4): w >= 13
REAL(8): w >= 21
REAL(16): w >= 37

11.23 List-directed and NAMELIST Output Default Formats
The length of the output value in NAMELIST and list-directed output depends on the
value being written. Blanks and unnecessary trailing zeroes are removed unless the
-w option to the assign command is specified, which turns off this compression.

By default, full-precision printing is assumed unless a precision is specified by
the LISTIO_PRECISION environment variable (for more information about
the LISTIO_PRECISION environment variable, see LISTIO_PRECISION
Environment Variable on page 77).

210 S–3901–71

Cray Fortran Implementation Specifics [11]

11.24 Random Number Generator
A multiplicative congruential generator with period 2**46 is used to produce the
output of the RANDOM_NUMBER intrinsic subroutine. The seed array contains one
64-bit integer value.

11.25 Timing Intrinsics
A call to the SYSTEM_CLOCK intrinsic subroutine with the COUNT argument present
translates into the inline instructions that directly access the hardware clock register.
See the description of the -e s and -d s command line options for information
about the values returned for the count and count rate. For fine-grained timing, Cray
recommends using a kind = 8 count variable.

The CPU_TIME subroutine obtains the value of its argument from the getrusage
system call. Its execution time is significantly longer than for the SYSTEM_CLOCK
routine, but the values returned are closer to those used by system accounting utilities.

11.26 IEEE Intrinsic Modules
The IEEE intrinsics modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and
IEEE_FEATURES are supplied. Denormal numbers are not supported on Cray
hardware. The IEEE_SUPPORT_DENORMAL inquiry function returns .false. for
all kinds of arguments.

At the start of program execution, all floating point exception traps are disabled.

S–3901–71 211

Cray Fortran Reference Manual

212 S–3901–71

Enhanced I/O: Using the Assign
Environment [12]

Fortran programs often need the ability to alter details of a file connection, such as
device residency, an alternative file name, a file space allocation scheme or structure,
or data conversion properties. These file connection details taken together comprise
the assign environment, and they can be modified by using the assign(1) command
and assign(3f) library interface.

The assign environment can also be accessed from C/C++ by using the
ffassign(3c) library interface.

12.1 Understanding the assign Environment
The assign command information is stored in the assign environment file,
.assign, or in a shell environment variable. To begin using the assign environment
to control a program's I/O behavior, follow these steps.

1. Set the FILENV environment variable to the desired path.

set FILENV environment-file

2. Run the assign command to define the current assign environment.

assign arguments assign-object

For example:

assign -F cachea g:su

3. Run your program.

4. If you are not satisfied with the I/O performance observed during program
execution, return to step 2, use the assign command to adjust the assign
environment, and try again.

S–3901–71 213

Cray Fortran Reference Manual

The assign(1) command passes information to Fortran open statements and to the
ffopen(3c) routine to identify the following elements:

• A list of unit numbers

• File names

• File name patterns that have attributes associated with them

The assign object is the file name, file name pattern, unit number, or type of I/O open
request to which the assign environment applies. When the unit or file is opened
from Fortran, the environment defined by the assign command is used to establish
the properties of the connection.

12.1.1 Assign Objects and Open Processing

The I/O library routines apply options to a file connection for all related assign
objects.

If the assign object is a unit, the application of options to the unit occurs whenever
that unit is connected.

If the assign object is a file name or pattern, the application of options to the file
connection occurs whenever a matching file name is opened from a Fortran program.

When any of the library I/O routines opens a file, it uses the specified assign
environment options for any assign objects that apply to the open request. Any of the
following assign objects or categories can apply to a given open request.

Table 24. Assign Object Open Processing

assign-object Applies to

g:all All open requests

g:su Open sequential unformatted

g:du Open direct unformatted

g:sf Open sequential formatted

g:df Open direct formatted

g_ff ffopen

u:unit-number Open unit-number

214 S–3901–71

Enhanced I/O: Using the Assign Environment [12]

assign-object Applies to

p:pattern When a file whose name matches pattern is
opened. The assign environment can contain only
one p:assign-object that matches the current
open file. The exception is that the p:%pattern
(which uses the % wildcard character) is silently
ignored if a more specific pattern also matches
the current file name being opened.

f:filename Whenever file filename is opened.

Options from the assign objects in these categories are collected to create the
complete set of options used for any particular open. The options are collected in
the listed order, with options collected later in the list of assign objects overriding
those collected earlier.

12.1.2 assign Command Syntax

Here is the syntax for the assign command:

assign [-I] [-O] [-a actualfile] [-b bs] [-f fortstd] [-m setting]
[-s ft] [-t] [-u bufcnt] [-y setting] [-B setting] [-C charcon]
[-D fildes] [-F spec[,specs]] [-N numcon] [-R] [-S setting]
[-T setting] [-U setting] [-V] [-W setting] [-Y setting] [-Z setting] assign-object

The following specifications cannot be used with any other options:

assign -R [assign-object]

assign -V [assign-object]

A summary of the command options follows. For details, see the assign(1) and
intro_ffio(3f) man pages.

Control options:

-I Specifies an incremental use of assign. All attributes are added to the
attributes already assigned to the current assign-object. This option
and the -O option are mutually exclusive.

-O Specifies a replacement use of assign. This is the default control
option. All currently existing assign attributes for the current
assign-object are replaced. This option and the -I option are
mutually exclusive.

-R Removes all assign attributes for assign-object. If assign-object is
not specified, all currently assigned attributes for all assign-objects
are removed.

S–3901–71 215

Cray Fortran Reference Manual

-V Views attributes for assign-object. If assign-object is not specified,
all currently assigned attributes for all assign-objects are printed.

Attribute options:

-a actualfile

The file= specifier or the actual file name.

-b bs Library buffer size in 4096-byte (512-word) blocks.

-f fortstd Specifies compatibility with a Fortran standard, where fortstd is
either 2003 for the current Cray Fortran or 95 for Cray Fortran
95. If the value 95 is set, the list-directed and namelist output of a
floating point will remain 0.E+0.

-m setting Special handling of a direct access file that will be accessed
concurrently by several processes or tasks. Special handling includes
skipping the check that only one Fortran unit be connected to a unit,
suppressing file truncation to true size by the I/O buffering routines,
and ensuring that the file is not truncated by the I/O buffering
routines. Enter either on or off for setting.

-s ft File type. Enter text, cos, blocked, unblocked, u, sbin, or
bin for ft. The default is text.

-t Temporary file.

-u bufcnt Buffer count. Specifies the number of buffers to be allocated for a
file.

-y setting Suppresses repeat counts in list-directed output. setting can be either
on or off. The default setting is off.

-B setting Activates or suppresses the passing of the O_DIRECT flag to the
open(2) system call. Enter either on or off for setting. This is an
important feature for I/O optimization; if this is on, it enables reads
and writes directly to and from the user program buffer.

-C charcon Character set conversion information. Enter ascii, or ebcdic
for charcon. If you specify the -C option, you must also specify the
-F option.

-D fildes Specifies a connection to a standard file. Enter stdin, stdout, or
stderr for fildes.

-F spec [,specs]

Flexible file I/O (FFIO) specification. See the assign(1) man
page for details about allowed values for spec and for details about
hardware platform support. See the intro_ffio(3f) man page for
details about specifying the FFIO layers.

216 S–3901–71

Enhanced I/O: Using the Assign Environment [12]

-N numcon Foreign numeric conversion specification. See the assign(1) man
page for details about allowed values for numcon and for details
about hardware platform support.

-S setting Suppresses use of a comma as a separator in list-directed output.
Enter either on or off for setting. The default setting is off.

-T setting Activates or suppresses truncation after write for sequential Fortran
files. Enter either on or off for setting.

-U setting Produces a non-UNICOS form of list-directed output. This is a
global setting that sets the value for the -y, -S, and -W options.
Enter either on or off for setting. The default setting is off.

-W setting Suppresses compressed width in list-directed output. Enter either on
or off for setting. The default setting is off.

-Y setting Skips unmatched namelist groups in a namelist input record. Enter
either on or off for setting. The default setting is off.

-Z setting Recognizes –0.0 for IEEE floating-point systems and writes the
minus sign for edit-directed, list-directed, and namelist output. Enter
either on or off for setting. The default setting is on.

assign-object

Specify either a file name or a unit number for assign-object. The
assign command associates the attributes with the file or unit
specified. These attributes are used during the processing of Fortran
open statements or during implicit file opens.

Use one of the following formats for assign-object:

• f:filename

• g:io-type, where io-type can be su, sf, du, df, or ff (for example, g:ff
for ffopen(3C)

• p:pattern (for example, p:file%)

• u:unit-number (for example, u:9)

• filename

When the p:pattern form is used, the % and _ wildcard characters can be used. The
% matches any string of 0 or more characters. The _ matches any single character.
The % performs like the * when doing file name matching in shells. However, the %
character also matches strings of characters containing the / character.

S–3901–71 217

Cray Fortran Reference Manual

12.1.3 Using the Library Routines

The assign(3f), asnunit(3f), asnfile(3f), and asnrm(3f) routines can be
called from a Fortran program to access and update the assign environment. The
assign routine provides an easy interface to assign processing from a Fortran
program. The asnunit and asnfile routines assign attributes to units and
files, respectively. The asnrm routine removes all entries currently in the assign
environment.

The calling sequences for library routines are as follows:

call assign (cmd, ier)

call asnunit (iunit,astring,ier)

call asnfile (fname,astring,ier)

call asnrm (ier)

Where:

cmd Fortran character variable containing a complete assign command
in the format acceptable to the pxfsystem routine.

ier Integer variable that is assigned the exit status on return from the
library interface routine.

iunit Integer variable or constant that contains the unit number to which
attributes are assigned.

astring Fortran character variable that contains any attribute options and
option values from the assign command. Control options -I, -O,
and -R can also be passed.

fname Character variable or constant that contains the file name to which
attributes are assigned.

A status of 0 indicates normal return. A status of greater than 0 indicates a specific
error status. Use the explain command to determine the meaning of the error
status.

The following calls are equivalent to the assign -s u f:file command:

call assign('assign -s u f:file',ier)
call asnfile('file','-s u',ier)

The following call is equivalent to executing the assign -I -n 2 u:99
command:

iun = 99
call asnunit(iun,'-i -n 2',ier)

The following call is equivalent to executing the assign -R command:

call asnrm(ier)

218 S–3901–71

Enhanced I/O: Using the Assign Environment [12]

12.2 Tuning File Connection Behavior

12.2.1 Using Alternative File Names

The -a option specifies the actual file name to which a connection is made. This
option allows files to be created in different directories without changing the FILE=
specifier on an OPEN statement.

For example, consider the following assign command issued to open unit 1:

assign -a /tmp/mydir/tmpfile u:1

The program then opens unit 1 with any of the following statements:

WRITE(1) variable ! implicit open
OPEN(1) ! unnamed open
OPEN(1,FORM='FORMATTED') ! unnamed open

Unit 1 is connected to file /tmp/mydir/tmpfile. Without the -a attribute, unit
1 would be connected to file fort.1.

When the -a attribute is associated with a file, any Fortran open that is set to connect
to the file causes a connection to the actual file name. An assign command of the
following form causes a connection to file $FILENV/joe:

assign -a $FILENV/joe ftfile

This is true when the following statement is executed in a program:

OPEN(IUN,FILE='ftfile')

If the following assign command is issued and in effect, any Fortran INQUIRE
statement whose FILE= specification is foo refers to the file named actual
instead of the file named foo for purposes of the EXISTS=, OPENED=, or UNIT=
specifiers:

assign -a actual f:foo

If the following assign command is issued and in effect, the -a attribute does not
affect INQUIRE statements with a UNIT= specifier:

assign -a actual ftfile

When the following OPEN statement is executed,
INQUIRE(UNIT=n,NAME=fname) returns a value of ftfile in fname, as if no
assign had occurred:

OPEN(n,file='ftfile')

S–3901–71 219

Cray Fortran Reference Manual

The I/O library routines use only the actual file (-a) attributes from the assign
environment when processing an INQUIRE statement. During an INQUIRE
statement that contains a FILE= specifier, the I/O library searches the assign
environment for a reference to the file name that the FILE= specifier supplies.
If an assign-by-filename exists for the file name, the I/O library determines
whether an actual name from the -a option is associated with the file name. If the
assign-by-filename supplied an actual name, the I/O library uses that name to return
values for the EXIST=, OPENED=, and UNIT= specifiers; otherwise, it uses the file
name. The name returned for the NAME= specifier is the file name supplied in the
FILE= specifier. The actual file name is not returned.

12.2.2 Specifying File Structure

A file structure defines the way records are delimited and how the end-of-file is
represented. The assign command supports two mutually exclusive file structure
options:

• To select a structure using an FFIO layer, use assign -F

• To select a structure explicitly, use assign -s

Using FFIO layers is more flexible than selecting structures explicitly. FFIO allows
nested file structures, buffer size specifications, and support for file structures not
available through the -s option. You will also realize better I/O performance by
using the -F option and FFIO layers.

For more information about the -F option and FFIO layers, see Chapter 13, Using
Flexible File I/O (FFIO) on page 233.

The remainder of this section covers the -s option.

Fortran sequential unformatted I/O uses four different file structures: f77 blocked
structure, text structure, unblocked structure, and COS blocked structure. By
default, the f77 blocked structure is used unless a file structure is selected at open
time. If an alternative file structure is needed, the user can select a file structure by
using the -s or -F option on the assign command.

The -s and -F options are mutually exclusive. The following examples show how to
use different assign command options to select different file structures.

Structure assign command

F77 blocked

assign -F f77

text

assign -F text
assign -s text

220 S–3901–71

Enhanced I/O: Using the Assign Environment [12]

unblocked

assign -F system
assign -s unblocked

COS blocked

assign -F cos
assign -s cos

The following examples show how to adjust blocking.

• To select an unblocked file structure for a sequential unformatted file:

IUN = 1
CALL ASNUNIT(IUN,'-s unblocked',IER)
OPEN(IUN,FORM='UNFORMATTED',ACCESS='SEQUENTIAL')

You can also use the assign -s u command to specify the unblocked file
structure for a sequential unformatted file. When this option is selected, I/O is
unbuffered. Each Fortran READ or WRITE statement results in a read(2) or
write(2) system call such as the following:

CALL ASNFILE('fort.1','-s u',IER)
OPEN(1,FORM='UNFORMATTED',ACCESS='SEQUENTIAL')

• To assign unit 10 a COS blocked structure:

assign -s cos u:10

The full set of options allowed with the assign -s command are as follows:

• bin (not recommended)

• blocked

• cos

• sbin

• text

• unblocked

S–3901–71 221

Cray Fortran Reference Manual

Table 25. Fortran Access Methods and Options

Access and form assign -s ft defaults assign -s ft options

Sequential unformatted, BUFFER IN
and BUFFER OUT

blocked / cos / f77 bin

sbin

u

unblocked

Direct unformatted unblocked bin

sbin

u

unblocked

Sequential formatted text blocked

cos

sbin/text

Direct formatted text sbin/text

12.2.2.1 Unblocked File Structure

A file with an unblocked file structure contains undelimited records. Because it
does not contain any record control words, it does not have record boundaries. The
unblocked file structure can be specified for a file opened with either unformatted
sequential access or unformatted direct access. It is the default file structure for a file
opened as an unformatted direct-access file.

Do not attempt to use a BACKSPACE statement to reposition a file with an unblocked
file structure. Since record boundaries do not exist, you cannot reposition the file to
a previous record.

BUFFER IN and BUFFER OUT statements can specify a file having an unbuffered
and unblocked file structure. If the file is specified with assign -s u, BUFFER
IN and BUFFER OUT statements can perform asynchronous unformatted I/O.

There are several ways to use the assign(1) command to specify unblocked file
structure. All ways result in a similar file structure but with different library buffering
styles, use of truncation on a file, alignment of data, and recognition of an end-of-file
record in the file. The following unblocked data file structure specifications are
available:

Specification Structure

assign -s unblocked Library-buffered

assign -F system No library buffering

assign -s sbin Buffering that is compatible with
standard I/O; for example, both library
and system buffering

222 S–3901–71

Enhanced I/O: Using the Assign Environment [12]

The type of file processing for an unblocked data file structure depends on the
assign -s ft option that is declared or assumed for a Fortran file.

For more information about buffering, see Specifying Buffer Behavior on page 226.

An I/O request for a file specified using the assign -s unblocked command
does not need to be a multiple of a specific number of bytes. Such a file is truncated
after the last record is written to the file. Padding occurs for files specified with
the assign -s bin command and the assign -s unblocked command.
Padding usually occurs when noncharacter variables follow character variables in an
unformatted direct-access file.

No padding is done in an unformatted sequential access file. An unformatted
direct-access file created by a Fortran program on CLE systems contains records that
are the same length. The end-of-file record is recognized in sequential-access files.

12.2.2.2 assign -s sbin File Processing

You can use an assign -s sbin specification for a Fortran file opened with
either unformatted direct access or unformatted sequential access. The file does not
contain record delimiters. The file created for assign -s sbin in this instance
has an unblocked data file structure and uses unblocked file processing.

The assign -s sbin option can be specified for a Fortran file that is declared
as formatted sequential access. Because the file contains records that are delimited
with the new-line character, it is not an unblocked data file structure. It is the same
as a text file structure.

The assign -s sbin option is compatible with the standard C I/O functions.

Note: Cray discourages the use of assign -s sbin because it typically yields
poor I/O performance. If you cannot use an FFIO layer, using assign -s text
for formatted files and assign -s unblocked for unformatted files usually
produces better I/O performance than using assign -s sbin.

12.2.2.3 assign -s bin File Processing

An I/O request for a file that is specified with assign -s bin does not need to be
a multiple of a specific number of bytes. Padding occurs when noncharacter variables
follow character variables in an unformatted record.

The I/O library uses an internal buffer for the records. If opened for sequential access,
a file is not truncated after each record is written to the file.

S–3901–71 223

Cray Fortran Reference Manual

12.2.2.4 assign -s u File Processing

The assign -s u command specifies undefined or unknown file processing.
An assign -s u specification can be specified for a Fortran file declared
as unformatted sequential or direct access. Because the file does not contain
record delimiters, it has an unblocked data file structure. Both synchronous and
asynchronous BUFFER IN and BUFFER OUT processing can be used with u file
processing.

Fortran sequential files declared by using assign -s u are not truncated after the
last word written. The user must execute an explicit ENDFILE statement on the file.

12.2.2.5 text File Structure

The text file structure consists of a stream of 8-bit ASCII characters. Every record
in a text file is terminated by a newline character (\n, ASCII 012). Some utilities
may omit the newline character on the last record, but the Fortran library treats such
an occurrence as a malformed record. This file structure may be specified for a file
that is declared as either formatted sequential access or formatted direct access. It is
the default file structure for formatted sequential access and formatted direct access
files.

The assign -s text command specifies the library-buffered text file structure.
Both library and system buffering are done for all text file structures.

An I/O request for a file using assign -s text does not need to be a multiple
of a specific number of bytes.

You cannot use BUFFER IN and BUFFER OUT statements with this structure. You
can use a BACKSPACE statement to reposition a file with this structure.

12.2.2.6 cos or blocked File Structure

The cos or blocked file structure uses control words to mark the beginning of each
sector and to delimit each record. You can specify this file structure for a file that is
declared as unformatted sequential access. Synchronous BUFFER IN and BUFFER
OUT statements can create and access files with this file structure.

You can specify this file structure with one of the following assign(1) commands:

assign -s cos
assign -s blocked
assign -F cos
assign -F blocked

These four assign commands result in the same file structure.

An I/O request on a blocked file is library buffered.

In a cos file structure, one or more ENDFILE records are allowed. BACKSPACE
statements can be used to reposition a file with this structure.

224 S–3901–71

Enhanced I/O: Using the Assign Environment [12]

A blocked file is a stream of words that contains control words called Block Control
Word (BCW) and Record Control Words (RCW) to delimit records. Each record is
terminated by an EOR (end-of-record) RCW. At the beginning of the stream, and
every 512 words thereafter (including any RCWs), a BCW is inserted. An end-of-file
(EOF) control word marks a special record that is always empty. Fortran considers
this empty record to be an endfile record. The end-of-data (EOD) control word is
always the last control word in any blocked file. The EOD is always immediately
preceded by either an EOR, or by an EOF and a BCW.

Each control word contains a count of the number of data words to be found between
it and the next control word. In the case of the EOD, this count is 0. Because there is
a BCW every 512 words, these counts never point forward more than 511 words.

A record always begins at a word boundary. If a record ends in the middle of a word,
the rest of that word is zero filled; the ubc field of the closing RCW contains the
number of unused bits in the last word.

The following illustration and table is a representation of the structure of a BCW.

m unused bdf unused bn fwi

(4) (7) (1) (19) (24) (9)

Field Bits Description

m 0–3 Type of control word; 0 for BCW

bdf 11 Bad Data flag (1-bit, 1=bad data)

bn 31–54 Block number (modulo 224)

fwi 55–63 Forward index; the number of words to the next control word

The following illustration and table is a representation of the structure of an RCW.

m ubc tran bdf srs unused pfi pri fwi

(4) (6) (1) (1) (1) (7) (20) (15) (9)

Field Bits Description

m 0–3 Type of control word; 108 for EOR, 168 for EOF, and 178 for EOD

ubc 4–9 Unused bit count; number of unused low-order bits in last word of previous
record

tran 10 Transparent record field (unused)

bdf 11 Bad data flag (unused)

S–3901–71 225

Cray Fortran Reference Manual

Field Bits Description

srs 12 Skip remainder of sector (unused)

pfi 20–39 Previous file index; offset modulo 220 to the block where the current file starts
(as defined by the last EOF)

pri 40–54 Previous record index; offset modulo 215 to the block where the current record
starts

fwi 55–63 Forward index; the number of words to the next control word

12.2.3 Specifying Buffer Behavior

A buffer is a temporary storage location for data while the data is being transferred.
Buffers are often used for the following purposes:

• Small I/O requests can be collected into a buffer, and the overhead of making
many relatively expensive system calls can be greatly reduced.

• Many data file structures such as cos contain control words. During the write
process, a buffer can be used as a work area where control words can be inserted
into the data stream (a process called blocking). The blocked data is then
written to the device. During the read process, the same buffer work area can be
used to remove the control words before passing the data on to the user (called
deblocking).

• When data access is random, the same data may be requested many times. A
cache is a buffer that keeps old requests in the buffer in case these requests are
needed again. A cache that is sufficiently large or efficient can avoid a large part
of the physical I/O by having the data ready in a buffer. When the data is often
found in the cache buffer, it is referred to as having a high hit rate. For example,
if the entire file fits in the cache and the file is present in the cache, no more
physical requests are required to perform the I/O. In this case, the hit rate is 100%.

• Running the I/O devices and the processors in parallel often improves
performance; therefore, it is useful to keep processors busy while data is
being moved. To do this when writing, data can be transferred to the buffer at
memory-to-memory copy speed. Use an asynchronous I/O request. The control
is then immediately returned to the program, which continues to execute as if
the I/O were complete (a process called write-behind). A similar process called
read-ahead can be used while reading; in this process, data is read into a buffer
before the actual request is issued for it. When it is needed, it is already in the
buffer and can be transferred to the user at very high speed.

226 S–3901–71

Enhanced I/O: Using the Assign Environment [12]

• When direct I/O is enabled (assign -B on), data is staged in the system
buffer cache. While this can yield improved performance, it also means that
performance is affected by program competition for system buffer cache. To
minimize this effect, avoid public caches when possible.

• In many cases, the best asynchronous I/O performance can be realized by
using the FFIO cachea layer (assign -F cachea). This layer supports
read-ahead, write-behind, and improved cache reuse.

The size of the buffer used for a Fortran file can have a substantial effect on I/O
performance. A larger buffer size usually decreases the system time needed to
process sequential files. However, large buffers increase a program's memory
usage; therefore, optimizing the buffer size for each file accessed in a program on a
case-by-case basis can help increase I/O performance and minimize memory usage.

The -b option on the assign command specifies a buffer size, in blocks, for the
unit. The -b option can be used with the -s option, but it cannot be used with the -F
option. Use the -F option to provide I/O path specifications that include buffer sizes;
the -b, and -u options do not apply when -F is specified.

For more information about the selection of buffer sizes, see the assign(1) man
page.

The following examples of buffer size specification illustrate using the assign -b
and assign -F options:

• If unit 1 is a large sequential file for which many Fortran READ or WRITE
statements are issued, you can increase the buffer size to a large value, using the
following assign command:

assign -b buffer-size u:buffer-count

• If the file foo is a small file or is accessed infrequently, you can minimize the
buffer size using the following assign command:

assign -b 1 f:foo

12.2.3.1 Default Buffer Sizes

The Fortran I/O library automatically selects default buffer sizes according to
file access type as shown in Table 26. You can override the defaults by using the
assign(1) command. The following subsections describe the default buffer sizes
on various systems.

Note: One block is 4,096 bytes on CLE systems.

S–3901–71 227

Cray Fortran Reference Manual

Table 26. Default Buffer Sizes for Fortran I/O Library Routines

Access Type Default Buffer Size

Sequential formatted 16 blocks (65,536 bytes)

Sequential unformatted 128 blocks (524,288 bytes)

Direct formatted The smaller of:

• The record length in bytes + 1

• 16 blocks (65,536 bytes)

Direct unformatted The larger of:

• The record length

• 16 blocks (65,536 bytes)

Four buffers of default size are allocated. For more information, see the description of
the cachea layer in the intro_ffio(3F) man page.

12.2.3.2 Library Buffering

The term library buffering refers to a buffer that the I/O library associates with a file.
When a file is opened, the I/O library checks the access, form, and any attributes
declared on the assign command to determine the type of processing that should be
used on the file. Buffers are an integral part of the processing.

If the file is assigned with one of the following assign(1) options, library buffering
is used:

-s blocked

-F spec (buffering as defined by spec)

-s cos

-s bin

-s unblocked

The -F option specifies flexible file I/O (FFIO), which uses library buffering if the
specifications selected include a need for buffering. In some cases, more than one
set of buffers might be used in processing a file. For example, the -F bufa,cos
option specifies two library buffers for a read of a blank compressed COS blocked
file. One buffer handles the blocking and deblocking associated with the COS
blocked control words, and the second buffer is used as a work area to process blank
compression. In other cases (for example, -F system), no library buffering occurs.

228 S–3901–71

Enhanced I/O: Using the Assign Environment [12]

12.2.3.3 System Cache

The operating system uses a set of buffers in kernel memory for I/O operations.
These are collectively called the system cache. The I/O library uses system calls
to move data between the user memory space and the system buffer. The system
cache ensures that the actual I/O to the logical device is well formed, and it tries to
remember recent data in order to reduce physical I/O requests.

The following assign(1) command options can be expected to use system cache:

-s sbin

-F spec (FFIO, depends on spec)

For the assign -F cachea command, a library buffer ensures that the actual
system calls are well formed and the system buffer cache is bypassed. This is not true
for the assign -s u option. If you plan to use assign -s u to bypass the
system cache, all requests must be well formed.

12.2.3.4 Unbuffered I/O

The simplest form of buffering is none at all; this unbuffered I/O is known as direct
I/O. For sufficiently large, well-formed requests, buffering is not necessary and can
add unnecessary overhead and delay. The following assign(1) command specifies
unbuffered I/O:

assign -s u ...

Use the assign command to bypass both library buffering and the system cache for
all well-formed requests. The data is transferred directly between the user data area
and the logical device. Requests that are not well formed will result in I/O errors.

12.2.4 Specifying Foreign File Formats

The Fortran I/O library can read and write files with record blocking and data
formats native to operating systems from other vendors. The assign -F command
specifies a foreign record blocking; the assign -C command specifies the type of
character conversion; the -N option specifies the type of numeric data conversion.
When -N or -C is specified, the data is converted automatically during the processing
of Fortran READ and WRITE statements. For example, assume that a record in file
fgnfile contains the following character and integer data:

character*4 ch
integer int
open(iun,FILE='fgnfile',FORM='UNFORMATTED')
read(iun) ch, int

Use the following assign command to specify foreign record blocking and foreign
data formats for character and integer data:

assign -F ibm.vbs -N ibm -C ebcdic fgnfile

S–3901–71 229

Cray Fortran Reference Manual

One of the most common uses of the assign command is to swap big-endian for
little-endian files. To access big-endian unformatted files on a little-endian system
such as the Cray XT, use the following command:

assign -N swap_endian fgnfile

This assumes the file is a normal f77 unformatted file with 32-bit record control
images with a byte count. The library routines swap both the control images and
the data when reading or writing the file.

If all unformatted sequential files are the opposite endianness, use the following
command:

assign -N swap_endian g:su

12.2.5 Specifying Memory Resident Files

The assign -F mr command specifies that a file will be memory resident.
Because the mr flexible file I/O layer does not define a record-based file structure, it
must be nested beneath a file structure layer when record blocking is needed.

For example, if unit 2 is a sequential unformatted file that is to be memory resident,
the following Fortran statements connect the unit:

CALL ASNUNIT (2,'-F cos,mr',IER)
OPEN(2,FORM='UNFORMATTED')

The -F cos,mr specification selects COS blocked structure with memory
residency.

12.2.6 Using and Suppressing File Truncation

The assign -T option activates or suppresses truncation after the writing of a
sequential Fortran file. The -T on option specifies truncation; this behavior is
consistent with the Fortran standard and is the default setting for most assign -s
fs specifications.

The assign(1) man page lists the default setting of the -T option for each -s fs
specification. It also indicates if suppression or truncation is allowed for each of
these specifications.

FFIO layers that are specified by using the -F option vary in their support for
suppression of truncation with -T off.

Figure 3 summarizes the available access methods and the default buffer sizes.

230 S–3901–71

Enhanced I/O: Using the Assign Environment [12]

Figure 3. Access Methods and Default Buffer Sizes

Blocked Unblocked

Access method
 assign option

Blocked
-s cos

Text
-s text

Undef
-s u

Binary
-s bin

Unblocked
-s unblocked

Buffer size
for default

Formatted sequential I/O
 WRITE(9,20)
 PRINT

Valid
Default 16

Formatted direct I/O
 WRITE(9,20,REC=)

Unformatted sequential I/O
 WRITE(9)

Unformatted direct I/O
 WRITE(9,REC=)

Buffer in/buffer out

Control words Yes NEWLINE No

Library buffering

System cached

BACKSPACE

Record size

Default library buffer size* 48 16 16

Any

Varies

Valid

Valid

Valid

Valid
Default

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Default

16

128

No No

Yes Yes Yes YesNo

min(recl+1, 8) bytes

max(16, recl) blocks

Any Any Any

Yes

No Yes

Yes No

No† No††

8*n

No No

Valid

*

†
††

Cached if not well-formed
No guarantee when physical size not 512 words
In units of 4096 bytes, unless otherwise specified*

16 None

Blocked
-F f77

Yes

16

Any

Yes

Yes

Yes

Valid
Default

Valid
Default

12.3 Defining the Assign Environment File
The assign command information is stored in the assign environment file. The
location of the active assign environment file must be provided by setting the
FILENV environment variable to the desired path and file name.

12.4 Using Local Assign Mode
The assign environment information is usually stored in the .assign environment
file. Programs that do not require the use of the global .assign environment
file can activate local assign mode. If you select local assign mode, the assign
environment will be stored in memory. Thus, other processes can not adversely affect
the assign environment used by the program.

The ASNCTL(3f) routine selects local assign mode when it is called by using one of
the following command lines:

CALL ASNCTL('LOCAL',1,IER)
CALL ASNCTL('NEWLOCAL',1,IER)

S–3901–71 231

Cray Fortran Reference Manual

Example 4. Local assign mode

In the following example, a Fortran program activates local assign mode and then
specifies an unblocked data file structure for a unit before opening it. The -I option
is passed to ASNUNIT to ensure that any assign attributes continue to have an effect
at the time of file connection.

C Switch to local assign environment
CALL ASNCTL('LOCAL',1,IER)
IUN = 11

C Assign the unblocked file structure
CALL ASNUNIT(IUN,'-I -s unblocked',IER)

C Open unit 11
OPEN(IUN,FORM='UNFORMATTED')

If a program contains all necessary assign statements as calls to ASSIGN, ASNUNIT,
and ASNFILE, or if a program requires total shielding from any assign commands,
use the second form of a call to ASNCTL, as follows:

C New (empty) local assign environment
CALL ASNCTL('NEWLOCAL',1,IER)
IUN = 11

C Assign a large buffer size
CALL ASNUNIT(IUN,'-b 336',IER)

C Open unit 11
OPEN(IUN,FORM='UNFORMATTED')

232 S–3901–71

Using Flexible File I/O (FFIO) [13]

13.1 Understanding FFIO
The flexible file I/O (FFIO) system is based on the concept that for all I/O, a
series of processing steps must be performed in order to transfer the user data
between the user's memory and the desired I/O device. I/O can be the slowest part
of a computational process and the speed of I/O access methods varies depending
on computational processes, but by using FFIO, it is often possible to enhance a
program's I/O performance without modifying or recompiling source code.

Figure 4 shows the typical flow of data from the user's variables to and from the I/O
device.

Figure 4. Typical Data Flow

Kernel
job

User ’s

System
call

Think of each box as a stopover point for the data, and each transition between
stopovers as a processing step. The actual I/O path can skip one or more steps in this
process, depending on the I/O features being used at a given point in a given program.

Each transition has benefits and costs, and different applications may use the I/O
system in different ways. For example, if I/O requests are large, the library buffer is
probably unnecessary, because the main use of the library buffer is to reduce the
number of system calls by consolidating smaller requests. To achieve better I/O
throughput with large I/O requests, do not use library buffering.

On the other hand, if I/O requests are small, then using the library buffer improves
performance by eliminating the overhead associated with making a system call for
each I/O request.

S–3901–71 233

Cray Fortran Reference Manual

The assign environment and FFIO enable you to modify the I/O process for existing
programs without changing or recompiling source code. The difference is that the
assign(1) command lets you modify the total I/O path, by establishing an overall
I/O environment, while the FFIO system lets you specify I/O behavior at each
stopover point along the path.

To specify FFIO layers, use the assign -F command with a comma-delimited
list of FFIO specifications. For example:

assign -F spec1,spec2,spec3...

Each spec in the list is a processing step that requests one I/O layer, or logical
grouping of layers. The layer specifies the operations performed on the data as it is
passed between the user and the I/O device. A layer refers to the specific type of
processing being done.

In some cases, the name corresponds directly to the name of one layer. In other cases,
however, specifying one layer invokes the routines used to pass the data through
multiple layers. See the intro_ffio(3f) man page for details about using the
assign command -F option.

Processing steps are ordered as if the -F side (the left side) is the user and the
system/device is the right side, as in the following example:

assign -F user,bufa,system

With this specification, a WRITE operation first performs the user operation on the
data, then performs the bufa operation, and then sends the data to the system. In a
READ operation, the process is performed from right to left. The data moves from
the system to the user. The layers closest to the user are higher-level layers; those
closer to the system are lower-level layers.

The FFIO system has an internal model of the world of data, which it maps to
any given actual logical file type. The following four concepts are essential to
understanding the inner workings of the layers.

Concept Definition

Data Data is a stream of bits.

Record marks

End-of-record (EOR) marks are boundaries between logical records.

File marks End-of-file (EOF) marks are special types of record marks that exist
in some file formats.

End-of-data (EOD)

An end-of-data (EOD) is a point immediately beyond the last data
bit, EOR, or EOF in the file.

All files are streams of 0 or more bits that may contain record and/or file marks.

234 S–3901–71

Using Flexible File I/O (FFIO) [13]

Individual layers have varying rules about which of these things can appear and in
which order they can appear in a file.

Both Fortran programmers and C programmers can use FFIO. Fortran users can use
the assign(1) command to specify FFIO options, while C users use FFIO layers by
calling the FFIO routines directly (ffopen(3c), ffread(3c), and ffwrite(3c)).

You can use FFIO with the Fortran I/O forms listed in the following table. For each
form, the equivalent assign command is shown.

Fortran I/O Form Equivalent assign Command

Buffer I/O assign -F f77

Unformatted sequential assign -F f77

Unformatted direct access assign -F cache

Formatted sequential assign -F text

Namelist assign -F text

List-directed assign -F text

13.2 Using FFIO Layers
The assign -F command specification list defines all the processing steps the I/O
system performs. If assign -F is specified, any default processing is overridden.
For example, unformatted sequential I/O is assigned a default structure of f77, which
is the same as is used if the -F f77 option is specified.

The FFIO system provides detailed control over I/O processing requests. However,
to effectively use the f77 option (or any FFIO option), you must understand the
I/O processing details.

For example, suppose you are making large I/O requests and do not require buffering
or blocking. You can specify:

assign -F system

The system layer is a generic system interface that chooses an appropriate layer for
your file. If the file is on a disk, it chooses the syscall layer, which maps each user
I/O request directly to the corresponding system call. A Fortran READ statement is
mapped to one or more read(2) system calls and a Fortran WRITE statement to one
or more write(2) system calls.

If you want your file to be F77 blocked (the default blocking for Fortran unformatted
I/O), you can specify:

assign -F f77

S–3901–71 235

Cray Fortran Reference Manual

If you want your file to be COS blocked, you can specify:

assign -F cos

Note: In all assign -F specifications, the system layer is the implied
last layer. The above example is functionally identical to assign -F
cos,system.

These two specifications request that each WRITE request first be blocked (blocking
adds control words to the data in the file to delimit records), and then the f77 layer
sends the blocked data to the system layer. The system layer passes the data
to the device.

The process is reversed for READ requests. For these requests, the system layer
first retrieves blocked data from the file, and then the blocked data is passed to the
next higher layer (the f77 layer), where it is deblocked. The deblocked data is then
presented to the user.

13.2.1 Available I/O Layers

Several different layers are available for the spec argument. Each layer invokes one
or more layers, which then handle the data they are given in the appropriate manner.
For example, the syscall layer essentially passes each request to an appropriate
system call. The mr layer tries to hold an entire file in a buffer that can change size
as the size of the file changes; it also limits actual I/O to lower layers so that I/O
occurs only at open, close, and overflow.

Table 27 defines the classes you can specify for the spec argument to the assign
-F option. For detailed information about each layer, see Chapter 14, FFIO Layer
Reference on page 247.

Table 27. FFIO Layers

Layer Function

bufa Asynchronous buffering layer

cache Memory-cached I/O

cachea Asynchronous memory-cached I/O

cos or blocked COS blocking; this is the default for Fortran
sequential unformatted I/O on UNICOS and
UNICOS/mk systems

event I/O monitoring layer

f77 FORTRAN record blocking; this is the default for
Fortran sequential unformatted I/O on CLE systems
and the common blocking format used by most
FORTRAN compilers

236 S–3901–71

Using Flexible File I/O (FFIO) [13]

Layer Function

fd File descriptor open

global Distributed cache layer for MPI, SHMEM, OpenMP,
and Coarray Fortran

ibm IBM file formats

mr Memory-resident file handlers

null Syntactic convenience for users (does nothing)

site User-defined site-specific layer

syscall System call I/O

system Generic system interface

text Newline separated record formats

user User-defined layer

vms VAX/VMS file formats

13.2.2 Specifying Layered I/O Options

You can modify the behavior of each I/O layer. The following spec format shows how
to specify a class and one or more opt and num fields:

class.opt1.opt2:num1:num2:num3

For class, you can specify one of the layers listed in Table 27. Each layer has a
different set of options and numeric parameters, because each layer performs different
duties. The following rules apply to the spec argument:

• The class and opt fields are case-insensitive. For example, the following two
specs are identical:

Ibm.VBs:100:200
IBM.vbS:100:200

• The opt and num fields are usually optional, but sufficient separators must be
specified as placeholders to eliminate ambiguity. For example, the following
specs are identical:

cos..::40, cos.::40
cos::40

In this example, opt1, opt2, num1, and num2 can assume default values.

• To specify more than one spec, use commas between specs. Within each spec
you can specify more than one opt and num. Use periods between opt fields,
and colons between num fields.

S–3901–71 237

Cray Fortran Reference Manual

The following options all have the same effect, specifying the vms layer and setting
the initial allocation to 100 blocks:

-F vms:100
-F vms.:100
-F vms..:100

The following option contains one spec for an vms layer that has an opt field of scr
(which requests scratch file behavior):

-F vms.scr

The following option requests two classes with no opts:

-F f77,vms

The following option contains two specs and requests two layers: cos and vms.
The cos layer has no options; the vms layer has options scr and ovfl, which
specify that the file is a scratch file that is allowed to overflow and that the maximum
allocation is 1000 sectors:

-F cos,vms.scr.ovfl::1000

When possible, the default settings of the layers are set so that optional fields are
seldom needed.

13.3 Using FFIO with Common File Structures

13.3.1 Reading and Writing Text Files

Use the fdcp command to copy files while converting record blocking.

Most human-readable files are in text format; this format contains records comprised
of ASCII characters with each record terminated by an ASCII line-feed character,
which is the newline character in UNIX. The FFIO specification that selects this file
structure is assign -F text.

The FFIO package is seldom required to handle text files. In the following types of
cases, however, using FFIO may be necessary:

• Optimizing text file access to reduce I/O wait time

• Handling multiple EOF records in text files

• Converting data files to and from other formats

I/O speed is important when optimizing text file access. Using assign -F text
is expensive in terms of processor time but enables you to use memory-resident files,
which may reduce or eliminate I/O wait time.

238 S–3901–71

Using Flexible File I/O (FFIO) [13]

The FFIO system can also process text files with embedded EOF records. The ~e
string alone in a text record is used as an EOF record. Editors such as sed(1) and
other standard utilities can process these files, but this processing is sometimes easier
with FFIO.

The text layer is useful in conjunction with the fdcp command. The text layer
provides a standard output format. Many forms of data that are not considered foreign
are sometimes encountered in a heterogeneous computing environment: if a record
format can be described with an FFIO specification, it usually can be converted to
text format by using a script similar to the following example:

OTHERSPEC=$1
INFILE=$2
OUTFILE=$3
assign -F ${OTHERSPEC} ${INFILE}
assign -F text ${OUTFILE}
fdcp ${INFILE} ${OUTFILE}

For example, if your script is named to.text, you would invoke it as follows:

% to.text cos data_cos data_text

13.3.2 Reading and Writing Unblocked Files

The simplest data file format is the binary stream or unblocked data. It contains no
record marks, file marks, or control words. This is usually the fastest way to move
large amounts of data because it involves a minimal amount of processor and system
overhead.

The FFIO package provides several layers designed specifically to handle a binary
stream of data. These layers are syscall, mr, bufa, cache, cachea, and
global. These layers behave the same from the user's perspective, but use different
system resources. The unblocked binary stream is usually used for unformatted
data transfer; it is not usually useful for text files or for when record boundaries or
backspace operations are required. The complete burden is placed on the application
to know the format of the file and the structure and type of the data it contains.

This lack of structure allows flexibility. For example, a file declared with one of these
layers can be manipulated as a direct-access file with any record length.

In this context fdcp can be called to do the equivalent of the cp(1) command, but
only if the input file is a binary stream, or used to remove blocking information, but
only if the output file is a binary stream.

S–3901–71 239

Cray Fortran Reference Manual

13.3.3 Reading and Writing Fixed-length Records

The most common use for fixed-length record files is for Fortran direct access. Both
unformatted and formatted direct-access files use a form of fixed-length records.
The simplest way to handle these files with the FFIO system is with binary stream
layers, such as system, syscall, cache, cachea, global, and mr. These
layers allow any requested pattern of access and also work with direct-access files.
The syscall and system layers, however, are unbuffered and do not give optimal
performance for small records.

The FFIO system also directly supports some fixed-length record formats.

13.3.4 Reading and Writing Blocked Files

The f77 blocking format is the default file structure for all Fortran sequential
unformatted files. The f77 layer is provided to handle these files.

The f77 layer is the default file structure on Cray systems. If you specify another
layer, such as mr, you may have to specify a f77 layer to get f77 blocking.

13.4 Tips for Enhancing I/O Performance
FFIO can be used to enhance performance in a program without changing or
recompiling the source code.

13.4.1 Buffer Size Considerations

In the FFIO system, buffering is the responsibility of the individual layers; therefore,
you must understand the individual layers in order to control the use and size of
buffers.

The cos layer has high payoff potential to the user who wants to extract top
performance by manipulating buffer sizes. As the following example shows, the cos
layer accepts a buffer size as the first numeric parameter:

assign -F cos:42 u:1

If the buffer is sufficiently large, the cos layer also lets you keep an entire file in the
buffer and avoid almost all I/O operations.

13.4.2 Removing Blocking

I/O optimization usually consists of reducing overhead. One part of the overhead in
doing I/O is the processor time spent in record blocking. For many files in many
programs, this blocking is unnecessary. If this is the case, the FFIO system can be
used to deselect record blocking and thus obtain performance advantages.

240 S–3901–71

Using Flexible File I/O (FFIO) [13]

The following layers offer unblocked data transfer:

Layer Definition

syscall System call I/O

bufa Buffering layer

cachea Asynchronous cache layer

cache Memory-resident buffer cache

global SHMEM and MPI cache layer

mr Memory-resident (MR) I/O

You can use any of these layers alone for any file that does not require the existence
of record boundaries. This includes applications written in C that require a byte
stream file.

13.4.2.1 The syscall Layer

The syscall layer offers a simple, direct system interface with a minimum of
system and library overhead. If requests are larger than approximately 64 K, this
method can be appropriate.

13.4.2.2 The bufa and cachea Layers

The bufa and cachea layers permit efficient file processing. Both layers provide
asynchronous buffering managed by the library, and the cachea layer allows
recently accessed parts of a file to be cached in memory.

The number of buffers and the size of each buffer are tunable. In the bufa:bs:nbufs
or cachea:bs:nbufs FFIO specifications, the bs argument specifies the size in
4096-byte blocks of each buffer. The default depends on the st_blksize field
returned from a stat(2) system call of the file; if this return value is 0, the default
is 8 for all files. The nbufs argument specifies the number of buffers to use. bufa
defaults to 2 buffers, while cachea defaults to 512 buffers.

13.4.2.3 The mr Layer

The mr layer lets you use main memory as an I/O device for many files. When used
in combination with the other layers, this permits cos blocked files, text files, and
direct-access files to reside in memory without recoding. This can result in improved
performance for the file, or part of a file, that resides in memory.

The mr layer features both scr and save mode and directs overflow to the next
lower layer automatically.

S–3901–71 241

Cray Fortran Reference Manual

The assign -F command specifies the entire set of processing steps that
are performed when I/O is requested. If a file is blocked, you must specify the
appropriate layer for the handling of block and record control words as in the
following examples:

assign -F f77,mr u:1
assign -F cos,mr fort.1

Sample Programs on page 244 contains several mr program examples.

13.4.2.4 The global Layer (Deferred Implementation)

The global layer is a caching layer that distributes data across all multiple SHMEM
or MPI processes. Open and close operations require participation by all processes
that access the file; all other operations are performed independently by one or more
processes. File positions can be private to a process or global to all processes.

You can specify both the cache size and the number of cache pages to use. Since
this layer is used by parallel processes, the actual number of cache pages used is the
number specified times the number of processes.

13.4.2.5 The cache Layer

The cache layer permits efficient file processing for repeated access to one or more
regions of a file. It is a library-managed buffer cache that contains a tunable number
of pages of tunable size.

To specify the cache layer, use the following option:

assign -F cache[:[bs][:[nbufs]]]

The bs argument specifies the size in 4096-byte blocks of each cache page; the
default is 16. The nbufs argument specifies the number of cache pages to use; the
default is 4. You can achieve improved I/O performance by using one or more of
the following strategies:

• Use a cache page size that is a multiple of the user's record size. This ensures that
no user record straddles two cache pages. If this is not possible or desirable, it is
best to allocate a few additional cache pages (nbufs).

• Use a number of cache pages that is greater than or equal to the number of file
regions the code accesses at one time.

242 S–3901–71

Using Flexible File I/O (FFIO) [13]

If the number of regions accessed within a file is known, the number of cache pages
can be chosen first. To determine the cache page size, divide the amount of memory
to be used by the number of cache pages. For example, suppose a program uses direct
access to read 10 vectors from a file and then writes the sum to a different file:

integer VECTSIZE, NUMCHUNKS, CHUNKSIZE
parameter(VECTSIZE=1000*512)
parameter(NUMCHUNKS=100)
parameter(CHUNKSIZE=VECTSIZE/NUMCHUNKS)
read a(CHUNKSIZE), sum(CHUNKSIZE)
open(11,access='direct',recl=CHUNKSIZE*8)
call asnunit (2,'-s unblocked',ier)
open (2,form='unformatted')
do i = 1,NUMCHUNKS

sum = 0.0
do j = 1,10
read(11,rec=(j-1)*NUMCHUNKS+i)a
sum=sum+a

enddo
write(2) sum

enddo
end

If 4 MB of memory are allocated for buffers for unit 11, 10 cache pages should be
used, each of the following size:

4MB/10 = 400000 bytes = 97 blocks

Make the buffer size an even multiple of the record length of 409600 bytes by
rounding it up to 100 blocks (= 409600 bytes), then use the following assign
command:

assign -F cache:100:10 u:11

S–3901–71 243

Cray Fortran Reference Manual

13.5 Sample Programs
The following examples illustrate the use of the mr layers.

Example 5. Unformatted direct mr with unblocked file

In the following example, batch job ex8 contains a program that uses unformatted
direct-access I/O with an mr layer:

#QSUB -r ex8 -lT 10 -lQ 500000
#QSUB -eo -o ex8.out
date
set -x
cd $TMPDIR
cat > ex8.f <<EOF

program example8
dimension r(512)
data r/512*2.0/
open(1,form='unformatted',access='direct',recl=4096)
do 100 i=1,100

write(1,rec=i,iostat=ier)r
if(ier.ne.0)then

if(ier.eq.5034)then
print *,"overflow to disk at record=",i

else
print *,"error on write=",ier

end if
end if

100 continue
do 200 i=100,1,-1

read(1,rec=i,iostat=ier)r
if(ier.ne.0)then

print *,"error on read=",ier
end if

200 continue
close(1)
end

EOF
ftn ex8.f -o ex8 # compile and compile
assign -R # reset assign parameters
assign -F mr.scr.ovfl::50: fort.1

assign file fort.1 to be mr with a
50 block limit

./ex8 # execute

The program writes the first 50 blocks of fort.1 to the memory-resident layer. The
next 50 blocks overflow the mr buffer and will be written to a disk. Because the scr
option is specified, the file is not saved when fort.1 is closed.

244 S–3901–71

Using Flexible File I/O (FFIO) [13]

Example 6. Unformatted sequential mr with blocked file

The following program uses an mr layer with unformatted sequential I/O:

program example4a
integer r(512)
data r/512*1.0/

C Reset assign environment, then assign file without FFIO
C to be read back in by subsequent program.

call assign('assign -R',ier1)
call assign('assign -a /tmp/file1 -s unblocked f:fort.1',ier2)
if(ier1.ne.0.or.ier2.ne.0)then

print *,"assign error"
goto200

end if
open(1,form='unformatted')

C write out 100 records to disk file: /tmp/file1
do 100 k=1,100

write(1)r
100 continue

close(1)
200 continue

end

In the program unit example4b that follows, the assign command arguments
contain the following options to use blocked file structure:

assign -R
assign -a /tmp/file1 -F f77,mr.save.ovfl u:3

S–3901–71 245

Cray Fortran Reference Manual

example4b writes an unblocked file disk file, /tmp/file1. If you want to use a
blocked file structure, the assign command arguments should contain the following
instructions in program unit example4a:

assign -R
assign -a /tmp/file1 f:fort.1

program example4b
integer r(512)

C Reset assign environment, then assign file
C with an mr layer.

call assign('assign -R',ier1)
call assign('assign -a /tmp/file1

& -F mr.save.ovfl u:3',ier2)
if(ier1.ne.0.or.ier2.ne.0)then

print *,"assign error"
goto300

end if
C open the previously written file '/tmp/file1',
C load it into memory

open(3,form='unformatted')
C read 5 records

do 200 k=1,5
read(3)r1

200 continue
rewind(3)

close(3)
300 continue

end

A sequential formatted file must always have a text specification before the
residency layer specification so that the I/O library can determine the end of a record.

246 S–3901–71

FFIO Layer Reference [14]

This chapter provides details about each of the following FFIO layers:

Layer Definition

bufa Library-managed asynchronous buffering

cache Memory-cached layer

cachea Asynchronous memory-cached layer

cos or blocked

COS blocking layer

event I/O monitoring layer

f77 Common UNIX Fortran record blocking

fd File descriptor open layer

global Distributed I/O for MPI, SHMEM, OpenMP, and Coarray Fortran
programs

ibm IBM file formats

mr Memory-resident file handlers

null Syntactic convenience for users

site User-defined site-specific layer

syscall System call I/O

system Generic system layer

text Newline-separated record formats

user User-defined layer

vms VAX/VMS file formats

Characteristics of Layers describes how to interpret the information presented in the
remaining sections of this chapter. See the intro_ffio(3) man page for more
details about FFIO layers.

S–3901–71 247

Cray Fortran Reference Manual

14.1 Characteristics of Layers
In the descriptions of the layers that follow, the Data Manipulation tables use the
following categories of characteristics:

Characteristic Description

Granularity Indicates the smallest amount of data
that the layer can handle. As of the
Programming Environment 5.2 release,
all layers use 8-bit (1-byte) granularity.

Data model Indicates the data model. Three main
data models are discussed in this section.
The first type is the Record model, which
has data with record boundaries and may
have an end-of-file (EOF).

The second type is Stream (a stream of
bits). None of these support the EOF.

The third type is the Filter, which
does not have a data model of its own
but derives it from the lower-level
layers. Filters usually perform a
data transformation (such as blank
compression or expansion).

Truncate on write Indicates whether the layer forces an
implied EOD on every write operation
(EOD implies truncation).

Implementation strategy Describes the internal routines that are
used to implement the layer.

The X-records type under
Implementation Strategy (if used in
the tables) refers to a record type
in which the length of the record is
prepended and appended to the record.
For f77 files, the record length is
contained in 4 bytes at the beginning and
the end of a record.

248 S–3901–71

FFIO Layer Reference [14]

In the descriptions of the layers, the Supported Operations tables use the following
categories:

Operation

Lists the operations that apply to that particular layer. The following
is a list of supported operations:

ffopen ffclose
ffread ffflush
ffreadc ffweof
ffwrite ffweod
ffwritec ffseek
ffbksp

Support Uses three potential values: Yes, No, or Passed through. Passed
through indicates that the layer does not directly support the
operation but relies on the lower-level layers to support it.

Used Lists two values: Yes or No. Yes indicates that the operation is
required of the next lower-level layer. No indicates that the operation
is never required of the lower-level layer. Some operations are
not directly required but are passed through to the lower-layer if
requested of this layer. These are noted in the comments.

Comments Describes the function or support of the layer's function.

On many layers, you can also specify the numeric parameters by using a keyword.

14.2 The bufa Layer
The bufa layer provides library-managed asynchronous buffering. It is optimized
to perform sequential I/O using adaptive I/O techniques, meaning the bufa layer
transforms READ and WRITE requests into read-ahead and write-behind requests.
This can minimize I/O wait time and reduce the number of low-level I/O requests
for some files.

The syntax is as follows:

bufa:[num1]:[num2]

The keyword syntax is as follows:

bufa[.bufsize=num1][.num_buffers=num2]

The num1 argument specifies the size, in 4096-byte blocks, of each buffer. The
default buffer size depends on the device on which your file is located. The maximum
allowed value on CLE systems 1,073,741,823 bytes. You may not, however, be able
to use a value this large because this much memory may not be available.

The num2 argument specifies the number of buffers to be used. The default is 2.

S–3901–71 249

Cray Fortran Reference Manual

Table 28. Data Manipulation: bufa Layer

Granularity Data model Truncate on write

8 bits Stream No

Table 29. Supported Operations: bufa Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes Yes

ffweof Passed
through

Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes Only if supported by the
underlying layer

Yes Only if explicitly requested

ffbksp No NA

14.3 The cache Layer
The cache layer improves nonsequential I/O by dividing files into cache page-sized
sections and keeping whichever pages are currently being accessed in main memory.
This can significantly improve data reuse, with appropriately configured buffers, and
can also reduce the number of low-level I/O requests for random access.

When used as the last layer above the system or syscall layer, the cache layer
supports the assign -B option to enable or disable direct I/O.

This layer also offers efficient sequential access when a buffered, unblocked file is
needed. The syntax is as follows:

cache[.type]:[num1]:[num2][num3]

The keyword syntax is as follows:

cache[.type][.page_size=num1][.num_pages=num2
[.bypass_size=num3]]

250 S–3901–71

FFIO Layer Reference [14]

The type argument can be mem, which directs cache pages to reside in main memory.
The num1 argument specifies the size of each cache page buffer in 4096-byte blocks.
The default is 16 blocks; the maximum allowed value is 2,147,483,647 bytes.
Because of memory limits, you are unlikely to be able to use a value approaching
the maximum size.

The num2 argument specifies the number of cache pages. The default is 4. The
num3 argument is the size, in 4096-byte blocks, at which the cache layer attempts
to bypass cache layer buffering. If an I/O request is larger than num3, the request
might not be copied to a cache page. The default is num3=num1×num2.

When a cache page must be preempted to allocate a page to the currently accessed
part of a file, the least recently accessed page is chosen for preemption. Every access
stores a time stamp with the accessed page so that the least recently accessed page
can be found at any time.

Table 30. Data Manipulation: cache Layer

Granularity Data model Truncate on write

8 bit Stream No

512 words Stream No

Table 31. Supported Operations: cache Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes No

ffreadc Yes No

ffwrite Yes No

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof No No

ffweod Yes Yes

ffseek Yes Yes Requires underlying interface to
be a stream

ffbksp No NA

S–3901–71 251

Cray Fortran Reference Manual

14.4 The cachea Layer
The cachea layer is similar to the cache layer in that it improves data reuse and
nonsequential I/O by dividing files into cache page-sized sections, then keeping
whichever pages are currently being accessed in main memory. However, like
the bufa layer, it also applies adaptive I/O techniques, transforming READ and
WRITE operations into read-ahead and write-behinds. Furthermore, unlike the bufa
layer, there can be multiple threads (I/O chains) of read-aheads and write-behinds,
depending on how the file is being accessed.

As a result, this layer can provide high write performance by asynchronously writing
out selective cache pages. It can also provide high read performance by detecting
sequential read access, both forward and backward. When sequential access is
detected and when read-ahead is chosen, file page reads are anticipated and issued
asynchronously in the direction of file access.

When used as the last layer above the system or syscall layer, the cachea layer
supports the assign -B option to enable or disable direct I/O.

The syntax is as follows:

cachea[type]:[num1]:[num2]:[num3]

The keyword syntax is as follows:

cachea[type][.page_size=num1][.num_pages=num2] [.max_lead=num3]

type Directs cache pages to reside in memory (mem).

num1 Specifies the size of each cache page buffer in 4,096-byte blocks.
The default is 512. The maximum allowed value is 1,073,741,823.
Because of memory limits, you are unlikely to be able to use the
maximum value.

num2 Specifies the number of cache pages to be used. The default is 8.

num3 Specifies the number of cache pages to asynchronously read ahead
when sequential read access patterns are detected. The default is
either (num-2 - 1) or 8, whichever is smaller.

Table 32. Data Manipulation: cachea Layer

Granularity Data model Truncate on write

8 bit Stream No

252 S–3901–71

FFIO Layer Reference [14]

Table 33. Supported Operations: cachea Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes No

ffreadc Yes No

ffwrite Yes No

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof No No

ffweod Yes Yes

ffseek Yes Yes Requires that the
underlying interface
be a stream

ffbksp No N/A

14.5 The cos Blocked Layer
The cos layer performs COS blocking and deblocking on a stream of data. The
general format of the cos specification follows:

cos:[.type][.num1]

The keyword syntax is as follows:

cos[.type][.bufsize=num1]

The num1 argument specifies the working buffer size in 4096-byte blocks.

If not specified, the default buffer size is the larger of the following: the large I/O
size, the preferred I/O block size (see the stat(2) man page for details), or 48
blocks. See the intro_ffio(3F) man page for more details.

When writing, full buffers are written in full record mode. Reads are always
performed in partial read mode; therefore, you do not have to know the block size to
read it (if the block size is larger than the buffer, partial mode reads ensure that no
parts of blocks are skipped).

S–3901–71 253

Cray Fortran Reference Manual

Table 34. Data Manipulation: cos Layer

Granularity Data model Truncate on write Implementation strategy

8 bit Records with multi-EOF
capability

Yes cos specific

Table 35. Supported Operations: cos Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No-op Yes

ffweof Yes No

ffweod Yes Yes Truncation occurs only on close

ffseek Yes Minimal support (see
following note)

Yes

ffbksp Yes No records No

Note: seek operations are supported only to allow for rewind (seek(fd,0,0))
and seek-to-end (seek(fd,0,2)).

14.6 The event Layer
The event layer enables you to monitor, on a per-file basis, the I/O activity that
occurs in the I/O layer immediately preceding it. It generates statistics as a text
log file and reports information such as the number of times an event was called,
the event wait time, the number of bytes requested, and so on. You can request the
following types of statistics:

• A list of all event types

• Event types that occur at least once

• A single-line summary of activities that shows information such as the amount of
data transferred and the data transfer rate.

254 S–3901–71

FFIO Layer Reference [14]

Statistics are reported to stderr by default. The FFIO_EVENT_LOGFILE
environment variable can be used to name a file to which statistics are written by the
event layer. The default action is to overwrite the existing statistics file if it exists.
You can append reports to the existing file by specifying a plus sign (+) before the
file name, as in this example:

setenv FFIO_EVENT_LOGFILE +saveIO

This layer report counts all I/O (read, write, etc.) and I/O-related (open, close,
fcntl, etc.) requests. These counts represent the number of calls made by the parent
layer above the event layer to the child layer below it. (The terms "above" and
"below" are somewhat arbitrary, with the "higher" layers being closer to the program
or application and the "lower" layers being closer to the operating system.) Both the
numbers and types of requests can change as you move down the FFIO chain, as
FFIO layers will consolidate multiple I/O requests into fewer requests and convert
requests from one type to another (i.e., from synchronous to asynchronous).

The event layer is enabled by default and is included in the executable file; you
do not have to relink to study the I/O performance of your program. To obtain
event statistics, rerun your program with the event layer specified on the assign
command, as in this example:

assign -F bufa,cachea,event,system

In the above example, the log file will show the I/O activity in the cachea layer.

The syntax for the event layer is as follows:

event[.type]

There is no alternate keyword specification for this layer.

The type argument selects the level of performance information to be written to the
log file; it can have one of the following values:

Value Definition

nostat No information is reported.

brief Generates a report on the amount of data transferred through the
event layer.

summary (default)

Generates three reports:

• The brief report.

• A report on file information, including the file size.

• A list of all the I/O and I/O-related requests that passed through
the event layer.

S–3901–71 255

Cray Fortran Reference Manual

14.7 The f77 Layer
The f77 layer handles blocking and deblocking of the f77 record type, which is
common to most UNIX Fortran implementations, for sequential unformatted files.
The syntax for this layer is as follows:

f77[.type]:[num1]:[num2]

The keyword syntax is as follows:

f77[.type][.recsize=num1][.bufsize=num2]

type Specifies the record type and can take one of two values:

nonvax Control words in a format common to computers
such as the MC68000 (big-endian); default.

vax VAX format (byte-swapped) control words.

The specification of vax or nonvax is not relevant to data
conversion.

num1 Maximum record size, in bytes. The default is 2 MB. The maximum
value that can be specified is 4 MB.

num2 Buffer size, in bytes. The default is 65 KB.

To achieve maximum performance, ensure that the working buffer size is large
enough to hold any records that are written plus the control words (control words
consist of two 4-byte fields; one at the beginning of the record and one at the end of
the record). If a record plus control words are larger than the buffer, the layer must
perform some inefficient operations to do the write. If the buffer is large enough,
these operations can be avoided.

On reads, the buffer size is not as important, although larger sizes will usually
perform better.

Table 36. Data Manipulation: f77 Layer

Granularity Data model Truncate on write Implementation strategy

8 bits Record Yes x records

Table 37. Supported Operations: f77 Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

256 S–3901–71

FFIO Layer Reference [14]

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Passed
through

Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes ffseek(fd,0,0)
equals rewind;
ffseek(fd,0,2)
seeks to end

Yes

ffbksp Yes Only in lower-level
layer

No

14.8 The fd Layer
The fd layer allows the connection of an FFIO file to a system file descriptor. You
must specify the fd layer, as follows:

fd:[num1]

The keyword specification is as follows:

fd[.file_descriptor=num1]

The num1 argument must be a system file descriptor for an open file. The ffopen
or ffopens request opens an FFIO file descriptor that is connected to the specified
file descriptor. The file connection does not affect the file whose name is passed to
ffopen.

When used as the last layer above the system or syscall layer, the fd layer
supports the assign -B option to enable or disable direct I/O.

All other properties of this layer are the same as the system layer. See The system
Layer on page 265 for details.

14.9 The global Layer (Deferred Implementation)
The global layer is a caching layer that distributes data across all multiple
SHMEM, MPI, OpenMP, or Coarray Fortran processes. Open and close operations
require participation by all processes that access the file; all other operations are
independently performed by one or more processes.

S–3901–71 257

Cray Fortran Reference Manual

The syntax for this layer is as follows:

global[. type]:[num1]:[num2]

The keyword syntax is as follows:

global[. type][.page_size=num1][.num_pages=num2]

The type argument can be privpos (default), in which the file position is private
to a process, or (deferred implementation) globpos, in which the file position is
global to all processes.

The num1 argument specifies the size in 4096-byte blocks of each cache page. The
default is 16.

The num2 argument specifies the number of cache pages to be used on each process.
The default is 4. If there are n processes, n × num2 cache pages are used.

num2 buffer pages are allocated on every process that shares access to a global file.
File pages are direct-mapped onto processes such that page n of the file will always
be cached on process (n mod NPES), where NPES is the total number of processes
sharing access to the global file. Once the process is identified where caching of the
file page will occur, a least-recently-used method is used to assign the file page to a
cache page within the caching process.

Table 38. Data Manipulation: global Layer

Granularity Data model Truncate on write

8 bits Stream No

Table 39. Supported Operations: global Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes No

ffreadc Yes No

ffwrite Yes No

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof No No

ffweod Yes Yes

258 S–3901–71

FFIO Layer Reference [14]

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffseek Yes Yes Requires underlying interface to be
a stream

ffbksp No NA

14.10 The ibm Layer
The ibm layer handles record blocking for seven common record types on IBM
operating systems. The general format of the specification follows:

ibm.[type]:[num1]:[num2]

The keyword syntax is as follows:

ibm[.type][.recsize=num1][.mbs=num2]

The supported type values are as follows:

Value Definition

u IBM undefined record type

f IBM fixed-length records

fb IBM fixed-length blocked records

v IBM variable-length records

vb IBM variable-length blocked records

vbs IBM variable-length blocked spanned records

The f format is fixed-length record format. For fixed-length records, num1 is the
fixed record length (in bytes) for each logical record. Exactly one record is placed
in each block.

The fb format records are the same as f format records except that you can place
more than one record in each block. num1 is the length of each logical record. num2
must be an exact multiple of num1.

The v format records are variable-length records. recsize is the maximum number of
bytes in a logical record. num2 must exceed num1 by at least 8 bytes. Exactly one
logical record is placed in each block.

The vb format records are variable-length blocked records. This means that you
can place more than one logical record in a block. num1 and num2 are the same as
with v format.

S–3901–71 259

Cray Fortran Reference Manual

The vbs format records have no limit on record size. Records are broken into
segments, which are placed into one or more blocks. num1 should not be specified.
When reading, num2 must be at least large enough to accommodate the largest
physical block expected to be encountered.

The num1 field is the maximum record size that may be read or written. The vbs
record type ignores it.

The num2 (maximum block size) field is the maximum block size that the layer uses
on reads or writes.

Table 40. Values for Maximum Record Size on ibm Layer

Field Minimum Maximum Default Comments

u 1 32,760 32,760

f 1 32,760 None Required

fb 1 32,760 None Required

v 5 32,756 32,752 Default is num2, 8 if not specified

vb 5 32,756 32,752 Default is num2, 8 if not specified

vbs 1 None None No maximum record size

Table 41. Values for Maximum Block Size in ibm Layer

Field Minimum Maximum Default Comments

u 1 32,760 32,760 Should be equal to num1

f 1 32,760 num1 Must be equal to num1

fb 1 32,760 num1 Must be multiple of num1

v 9 32,760 32,760 Must be >= num1 + 8

vb 9 32,760 32,760 Must be >= num1 + 8

vbs 9 32,760 32,760

Table 42. Data Manipulation: ibm Layer

Granularity Data model Truncate on write Implementation strategy

8 bits Record No for f and fb records. Yes
for v, vb, and vbs records.

f records for f and fb. v records for
u, v, vb, and vbs.

260 S–3901–71

FFIO Layer Reference [14]

Table 43. Supported Operations: ibm Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Passed through Yes

ffweod Yes Yes

ffseek Yes seek(fd,0,0)
only (equals rewind)

Yes seek(fd,0,0) only

ffbksp No No

14.11 The mr Layer
The memory-resident (mr) layer lets users declare that all or part of a file will reside
in memory. This can improve performance for relatively small files that are heavily
accessed or for larger files where the first part of the file is heavily accessed (for
example, a file which contains a frequently updated directory at the beginning.) The
mr layer tries to allocate a buffer large enough to hold the entire file.

Note: It is generally more advantageous to configure the layer preceding the mr
layer to make the file buffer-resident, assuming that layer can support buffers of
sufficient size.

The options are as follows:

mr[.type[.subtype]]:num1:num2:num3

The keyword syntax is as follows:

mr[.type[.subtype]][.start_size=num1][.max_size=num2]
[.inc_size=num3]

S–3901–71 261

Cray Fortran Reference Manual

The type field specifies whether the file in memory is intended to be saved or is
considered a scratch file. This argument accepts the following values:

Value Definition

save Default. The file is loaded into memory when opened and written
back to the next lower layer when closed. The save option also
modifies the behavior of overflow processing.

scr Scratch file. The file is not read into memory when opened and not
written when closed.

The subtype field specifies the action to take when the data can no longer fit in the
allowable memory space. It accepts the following values:

Value Definition

ovfl Default. Data which does not fit (overflows) the maximum specified
memory allocation is written to the next lower layer, which is
typically a disk file. An informative message is written to stderr
on the first overflow.

ovflnomsg Identical to ovfl, except that no message is issued when the data
overflows the memory-resident buffer.

novfl If data does not fit in memory, subsequent write(1) operations fail.

The num1, num2, and num3 fields are nonnegative integer values that state the
number of 4096-byte blocks to use in the following circumstances:

Field Definition

num1 The initial size of the memory allocation, specified in 4,096-byte
blocks. The default is 0.

num2 The maximum size of the memory allocation, specified in 4,096-byte
blocks. The default is either num1 or 256 blocks (1 MB), whichever
is larger.

num3 Increment the size of the memory allocation, in 4,096-byte blocks.
This value is used when allocating additional memory space. The
default is 256 blocks (1 MB) or (num2-num1), whichever is smaller.

The num1 and num3 fields represent best-effort values. They are intended for tuning
purposes only and usually do not cause failure if not satisfied precisely as specified.
For example, if the available memory space is 100 blocks and the specified num3
value is 200 blocks, growth is allowed up to the 100 available blocks rather than
failing to grow.

262 S–3901–71

FFIO Layer Reference [14]

!
Caution: When using the mr layer, you must ensure that the size of the
memory-resident portions of the files are limited to reasonable values.
Unrestrained and unmanaged growth of such file portions can cause heap
fragmentation, exhaustion of all available memory, and program abort. If this
growth has consumed all available memory, the program may not abort gracefully,
making such a condition difficult to diagnose.

Large memory-resident files may reduce I/O performance for sites that provide
memory scheduling that favors small processes over large processes. Check with your
system administrator if I/O performance is diminished.

Increment sizes which are too small can also contribute to heap fragmentation.

Memory allocation is done by using the malloc(3c) and realloc(3c) library
routines. The file space in memory is always allocated contiguously.

When allocating new chunks of memory space, the num3 argument is used in
conjunction with realloc as a minimum first try for reallocation.

Table 44. Data Manipulation: mr Layer

Primary function Granularity Data model Truncate on write

Keep the file resident in
memory and avoid I/O if
possible.

8 bit Stream No

Table 45. Supported Operations: mr Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes Sometimes delayed until overflow

ffread Yes Yes Only on open

ffreadc Yes No

ffwrite Yes Yes Only on close, overflow

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No-op No

ffweof No No representation No No representation

ffweod Yes Yes

S–3901–71 263

Cray Fortran Reference Manual

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffseek Yes Full support
(absolute, relative,
and from end)

Yes Used in open and close processing

ffbksp No No records No

14.12 The null Layer
The null layer is a syntactic convenience for users; it has no effect. This layer is
commonly used to simplify the writing of a shell script when a shell variable is used
to specify an FFIO layer specification. For example, the following line is from a shell
script with a file using the assign command and with overlying blocking expected
(as specified by BLKTYP):

assign -F $BLKTYP,cos fort.1

If BLKTYP is undefined, the illegal specification list ,cos results. The existence of
the null layer lets the programmer set BLKTYP to null as a default, and simplify
the script, as in:

assign -F null,cos fort.1

This is identical to the following command:

assign -F cos fort.1

When used as the last layer above the system or syscall layer, the null layer
supports the assign -B option to enable or disable direct I/O.

14.13 The syscall Layer
The syscall layer directly maps each request to an appropriate system call. The
layer does not accept any options.

Table 46. Data Manipulation: syscall Layer

Granularity Data model Truncate on write

8 bits (1 byte) Stream No

264 S–3901–71

FFIO Layer Reference [14]

Table 47. Supported Operations: syscall Layer

Operation Supported Comments

ffopen Yes open

ffread Yes read

ffreadc Yes read plus code

ffwrite Yes write

ffwritec Yes write plus code

ffclose Yes close

ffflush Yes None

ffweof No None

ffweod Yes trunc(2)

ffseek Yes lseek(2)

ffbksp No

Lower-level layers are not allowed.

14.14 The system Layer
The system layer is implicitly appended to all specification lists, if not explicitly
added by the user (unless the syscall or fd layer is specified). It maps requests to
appropriate system calls.

For a description of options, see the syscall layer. Lower-level layers are not
allowed.

14.15 The text Layer
The text layer performs text blocking by terminating each record with a newline
character. It can also recognize and represent the EOF mark. The text layer is used
with character files and does not work with binary data. The general specification
follows:

text[.type]:[num1]:[num2]

The keyword syntax is as follows:

text[.type][.newline=num1][.bufsize=num2]

S–3901–71 265

Cray Fortran Reference Manual

The type field can have either of the following values:

Value Definition

nl Newline-separated records.

eof Newline-separated records with a special string such as ~e. More
than one EOF in a file is allowed.

The num1 field is the decimal value of a single character that represents the newline
character. The default value is 10 (octal 012, ASCII line feed).

The num2 field specifies the working buffer size (in decimal bytes). If any lower-level
layers are record oriented, the num2 value also specifies the block size.

Table 48. Data Manipulation: text Layer

Granularity Data model Truncate on write

8 bits Record No

Table 49. Supported Operations: text Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Passed through Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes Yes

ffbksp No No

14.16 The user and site Layers
The user and site layers let users and site administrators build user-defined or
site-specific layers to meet special needs. The syntax follows:

user[num1]:[num2]

site:[num1]:[num2]

266 S–3901–71

FFIO Layer Reference [14]

The open processing passes the num1 and num2 arguments to the layer and these
arguments are interpreted by the layers.

See Chapter 15, Creating a user Layer on page 271 for an example of how to create
a user FFIO layer.

14.17 The vms Layer
The vms layer handles record blocking for three common record types on VAX/VMS
operating systems. The general format of the specification follows:

vms.[type.subtype]:[num1]:[num2]

The following is the alternate keyword syntax for this layer:

vms.[type.subtype][.recsize=num1][.mbs=num2]

The following type values are supported:

Value Definition

f VAX/VMS fixed-length records

v VAX/VMS variable-length records

s VAX/VMS variable-length segmented records

In addition to the record type, you must specify a record subtype, which has one
of the following values:

Value Definition

bb Format used for binary blocked transfers

disk Same as binary blocked

tr Transparent format, for files transferred as a bit stream to and from
the VAX/VMS system

tape VAX/VMS labeled tape

The num1 field is the maximum record size that may be read or written. It is ignored
by the s record type.

Table 50. Values for Record Size: vms Layer

Field Minimum Maximum Default Comments

v.bb 1 32,767 32,767

v.tape 1 9995 2043

v.tr 1 32,767 2044

s.bb 1 None None No maximum record size

S–3901–71 267

Cray Fortran Reference Manual

Field Minimum Maximum Default Comments

s.tape 1 None None No maximum record size

s.tr 1 None None No maximum record size

The num2 field is the maximum segment or block size that is allowed on input and
is produced on output. For vms.f.tr and vms.f.bb, num2 should be equal to
the record size (num1). Because vms.f.tape places one or more records in each
block, vms.f.tape num2 must be greater than or equal to num1.

Table 51. Values for Maximum Block Size: vms Layer

Field Minimum Maximum Default Comments

v.bb 1 32,767 32,767

v.tape 6 32,767 2,048

v.tr 3 32,767 32,767 N/A

s.bb 5 32,767 2,046

s.tape 7 32,767 2,048

s.tr 5 32,767 2,046 N/A

For vms.v.bb and vms.v.disk records, num2 is a limit on the maximum record
size. For vms.v.tape records, it is the maximum size of a block on tape; more
specifically, it is the maximum size of a record that will be written to the next lower
layer. If that layer is tape, num2 is the tape block size. If it is cos, it will be a COS
record that represents a tape block. One or more records are placed in each block.

For segmented records, num2 is a limit on the block size that will be produced. No
limit on record size exists. For vms.s.tr and vms.s.bb, the block size is an
upper limit on the size of a segment. For vms.s.tape, one or more segments are
placed in a tape block. It functions as an upper limit on the size of a segment and
as a preferred tape block size.

Table 52. Data Manipulation: vms Layer

Granularity Data model Truncate on write Implementation strategy

8 bits Record No for f records. Yes for v and
s records.

f records for f formats. v records
for v formats.

268 S–3901–71

FFIO Layer Reference [14]

Table 53. Supported Operations: vms Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Yes and
passed
through

Yes for s records;
passed through for
others

Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes seek(fd,0,0) only
(equals rewind)

Yes seek(fd,0,0) only

ffbksp No No

S–3901–71 269

Cray Fortran Reference Manual

270 S–3901–71

Creating a user Layer [15]

This chapter explains some of the internals of the FFIO system and explains the ways
in which you can put together a user or site layer.

15.1 Internal Functions
The FFIO system has an internal model of data that maps to any given actual logical
file type based on the following concepts:

• Data is a stream of bits. Layers must declare their granularity by using the
fffcntl(3c) call.

• Record marks are boundaries between logical records.

• End-of-file (EOF) marks are a special type of record that exists in some file
structures.

• End-of-data (EOD) is a point immediately beyond the last data bit, EOR, or EOF
in the file. You cannot read past or write after an EOD. In a case when a file is
positioned after an EOD, a write operation (if valid) immediately moves the
EOD to a point after the last data bit, end-of-record (EOR), or EOF produced
by the write.

All files are streams that contain zero or more data bits that may contain record
or file marks.

No inherent hierarchy or ordering is imposed on the file structures. Any number of
data bits or EOR and EOF marks may appear in any order. The EOD, if present, is by
definition last. Given the EOR, EOF, and EOD return statuses from read operations,
only EOR may be returned along with data. When data bits are immediately followed
by EOF, the record is terminated implicitly.

Individual layers can impose restrictions for specific file structures that are more
restrictive than the preceding rules. For instance, in COS blocked files, an EOR
always immediately precedes an EOF.

Successful mappings were used for all logical file types supported, except formats
that have more than one type of partitioning for files (such as end-of-group or more
than one level of EOF). For example, some file formats have level numbers in the
partitions. FFIO maps level 017 to an EOF. No other handling is provided for these
level numbers.

S–3901–71 271

Cray Fortran Reference Manual

Internally, there are two main protocol components: the operations and the stat
structure.

15.1.1 The Operations Structure

Many of the operations try to mimic the CLE system calls. In the man pages for
ffread(3c), ffwrite(3c), and others, the calls can be made without the optional
parameters and appear like the system calls. Internally, all parameters are required.

Table 54 provides a brief synopsis of the interface routines that are supported at
the user level. Each of these ff entry points checks the parameters and issues the
corresponding internal call. Each interface routine provides defaults and dummy
arguments for those optional arguments the user does not provide.

Each layer must have an internal entry point for all of these operations, although in
some cases the entry point may simply issue an error or do nothing. For example, the
syscall layer uses _ff_noop for the ffflush entry point because it has no
buffer to flush, and it uses _ff_err2 for the ffweof entry point because it has no
representation for EOF. No optional parameters for calls to the internal entry points
exist. All arguments are required.

Table 54. C Program Entry Points

Variable Definition

fd The FFIO pointer (struct fdinfo *)fd.

file A char* file.

flags File status flag for open, such as O_RDONLY.

buf Bit pointer to the user data.

nb Number of bytes.

ret The status returned; >=0 is valid, <0 is error.

stat A pointer to the status structure.

fulp The value FULL or PARTIAL defined in ffio.h for full
or partial-record mode.

&ubc A pointer to the unused bit count; this ranges from 0 to
7 and represents the bits not used in the last byte of the
operation. It is used for both input and output.

pos A byte position in the file.

opos The old position of the file, just like the system call.

whence The same as the syscall.

cmd The command request to the fffcntl(3c) call.

arg A generic pointer to the fffcntl argument.

272 S–3901–71

Creating a user Layer [15]

Variable Definition

mode Bit pattern denoting file's access permissions.

argp A pointer to the input or output data.

len The length of the space available at argp. It is used
primarily on output to avoid overwriting the available
memory.

15.1.2 FFIO and the stat Structure

The stat structure contains four fields in the current implementation. They mimic
the iows structure of the CLE ASYNC syscalls to the extent possible. All
operations are expected to update the stat structure on each call. The SETSTAT and
ERETURN macros are provided in the ffio.h file for this purpose.

The fields in the stat structure are as follows:

Status field Description

stat.sw_flag 0 indicates outstanding; 1 indicates I/O complete.

stat.sw_error 0 indicates no error; otherwise, the error number.

stat.sw_count Number of bytes transferred in this request. This
number is rounded up to the next integral value if
a partial byte is transferred.

stat.sw_stat This indicates the status of the I/O operation. The
FFSTAT(stat) macro accesses this field. The
following values are valid:

FFBOD: At beginning-of-data (BOD).

FFCNT: Request terminated by count (either the
count of bytes before EOF or EOD in the file or
the count of the request).

FFEOR: Request termination by EOR, or a full
record mode read was processed.

FFEOF: EOF encountered.

FFEOD: EOD encountered.

FFERR: Error encountered.

If count is satisfied simultaneously with EOR, the FFEOR is returned.

S–3901–71 273

Cray Fortran Reference Manual

The EOF and EOD status values must never be returned with data. This means that if
a byte-stream file is being traversed and the file contains 100 bytes followed by an
EOD, a read of 500 bytes returns a stat value of FFCNT and a return byte count of
100. The next read operation returns FFEOD and a count of 0.

A FFEOF or FFEOD status is always returned with a 0-byte transfer count.

15.2 user Layer Example
This section gives a complete and working user layer. It traces I/O at a given level.
All operations are passed through to the next lower-level layer, and a trace record is
sent to the trace file.

The first step in generating a user layer is to create a table that contains the addresses
for the routines that will fulfill the required functions described in The Operations
Structure on page 272 and FFIO and the stat Structure on page 273. The format
of the table can be found in struct xtr_s, which is found in the <ffio.h>
file. No restriction is placed on the names of the routines, but the table must be
called _usr_ffvect for it to be recognized as a user layer. In the example, the
declaration of the table can be found with the code in the _usr_open routine.

To use this layer, you must take advantage of the weak external files in the library.
The following script fragment is suggested for CLE systems:

-D_LIB_INTERNAL is required to obtain the
declaration of struct fdinfo in <ffio.h>
#
cc -c -D_LIB_INTERNAL -hcalchars usr*.c
cat usr*.o > user.o
#
Note that the -F option is selected that loads
and links the entries despite not having any
hard references.

cc -o user.o myprog.o
assign -F user,others... fort.1
./abs

274 S–3901–71

Creating a user Layer [15]

static char USMID[] = "@(#)code/usrbksp.c 1.0 ";
/* COPYRIGHT CRAY INC.
* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/
#include <ffio.h>
#include "usrio.h"
/*
* trace backspace requests
*/
int
_usr_bksp(struct fdinfo *fio, struct ffsw *stat)

{
struct fdinfo *llfio;
int ret;

llfio = fio->fioptr;
_usr_enter(fio, TRC_BKSP);
_usr_pr_2p(fio, stat);
ret = XRCALL(llfio, backrtn) llfio, stat);
_usr_exit(fio, ret, stat);

return(0);
}

S–3901–71 275

Cray Fortran Reference Manual

static char USMID[] = "@(#)code.usrclose.c 1.0 ";
/* COPYRIGHT CRAY INC.
* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <stdio.h>
#include <malloc.h>
#include <ffio.h>
#include "usrio.h"
/*
* trace close requests
*/

int
_usr_close(struct fdinfo *fio, struct ffsw *stat)

{
struct fdinfo *llfio;
struct trace_f *pinfo;
int ret;
llfio = fio->fioptr;

/*
* lyr_info is a place in the fdinfo block that holds
* a pointer to the layer's private information.
*/

pinfo = (struct trace_f *)fio->lyr_info;

_usr_enter(fio, TRC_CLOSE);
_usr_pr_2p(fio, stat);

/*
* close file
*/

ret = XRCALL(llfio, closertn) llfio, stat);
/*
* It is the layer's responsibility to clean up its mess.
*/

free(pinfo->name);
pinfo->name = NULL;
free(pinfo);
_usr_exit(fio, ret, stat);
(void) close(pinfo->usrfd);
return(0);
}

276 S–3901–71

Creating a user Layer [15]

static char USMID[] = "@(#)code/usrfcntl.c 1.0 ";
/* COPYRIGHT CRAY INC.
* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <ffio.h>
#include "usrio.h"
/*
* trace fcntl requests
*
* Parameters:
* fd - fdinfo pointer
* cmd - command code
* arg - command specific parameter
* stat - pointer to status return word
*
* This fcntl routine passes the request down to the next lower
* layer, so it provides nothing of its own.
*
* When writing a user layer, the fcntl routine must be provided,
* and must provide correct responses to one essential function and
* two desirable functions.
*
* FC_GETINFO: (essential)
* If the 'cmd' argument is FC_GETINFO, the fields of the 'arg' is
* considered a pointer to an ffc_info_s structure, and the fields
* must be filled. The most important of these is the ffc_flags
* field, whose bits are defined in <ffio.h>.(Look for FFC_STRM
* through FFC_NOTRN)
* FC_STAT: (desirable)
* FC_RECALL: (desirable)
*/

int
_usr_fcntl(struct fdinfo *fio, int cmd, void *arg, struct ffsw *stat)

{
struct fdinfo *llfio;
struct trace_f *pinfo;
int ret;

llfio = fio->fioptr;
pinfo = (struct trace_f *)fio->lyr_info;
_usr_enter(fio, TRC_FCNTL);
_usr_info(fio, "cmd=%d ", cmd);
ret = XRCALL(llfio, fcntlrtn) llfio, cmd, arg, stat);
_usr_exit(fio, ret, stat);
return(ret);
}

static char USMID[] = "@(#)code/usropen.c 1.0 ";

/* COPYRIGHT CRAY INC.
* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <stdio.h>
#include <fcntl.h>
#include <malloc.h>
#include <ffio.h>

S–3901–71 277

Cray Fortran Reference Manual

#include "usrio.h"
#define SUFFIX ".trc"

/*
* trace open requests;
* The following routines compose the user layer. They are declared
* in "usrio.h"
*/

/*
* Create the _usr_ffvect structure. Note the _ff_err inclusion to
* account for the listiortn, which is not supported by this user
* layer
*/

struct xtr_s _usr_ffvect =
{
_usr_open, _usr_read, _usr_reada, _usr_readc,
_usr_write, _usr_writea, _usr_writec, _usr_close,
_usr_flush, _usr_weof, _usr_weod, _usr_seek,
_usr_bksp, _usr_pos, _usr_err, _usr_fcntl
};

_ffopen_t
_usr_open(

const char *name,
int flags,
mode_t mode,
struct fdinfo * fio,
union spec_u *spec,
struct ffsw *stat,
long cbits,
int cblks,
struct gl_o_inf *oinf)
{
union spec_u *nspec;
struct fdinfo *llfio;
struct trace_f *pinfo;
char *ptr = NULL;
int namlen, usrfd;
_ffopen_t nextfio;
char buf[256];

namlen = strlen(name);
ptr = malloc(namlen + strlen(SUFFIX) + 1);
if (ptr == NULL) goto badopen;
pinfo = (struct trace_f *)malloc(sizeof(struct trace_f));
if (pinfo == NULL) goto badopen;

fio->lyr_info = (char *)pinfo;
/*
* Now, build the name of the trace info file, and open it.
*/

strcpy(ptr, name);
strcat(ptr, SUFFIX);
usrfd = open(ptr, O_WRONLY | O_APPEND | O_CREAT, 0666);

/*
* Put the file info into the private data area.
*/

278 S–3901–71

Creating a user Layer [15]

pinfo->name = ptr;
pinfo->usrfd = usrfd;
ptr[namlen] = '\0';

/*
* Log the open call
*/

_usr_enter(fio, TRC_OPEN);
sprintf(buf,"(\"%s\", %o, %o...);\n", name, flags, mode);
_usr_info(fio, buf, 0);

/*
* Now, open the lower layers
*/

nspec = spec;
NEXT_SPEC(nspec);
nextfio = _ffopen(name, flags, mode, nspec, stat, cbits, cblks,

NULL, oinf);
_usr_exit_ff(fio, nextfio, stat);
if (nextfio != _FFOPEN_ERR)

{
DUMP_IOB(fio); /* debugging only */
return(nextfio);
}

/*
* End up here only on an error
*
*/

badopen:
if(ptr != NULL) free(ptr);
if (fio->lyr_info != NULL) free(fio->lyr_info);
_SETERROR(stat, FDC_ERR_NOMEM, 0);
return(_FFOPEN_ERR);

}
_usr_err(struct fdinfo *fio)
{
_usr_info(fio,"ERROR: not expecting this routine\n",0);
return(0);

}

S–3901–71 279

Cray Fortran Reference Manual

static char USMID[] = "@(#)code/usrpos.c 1.1 ";

/* COPYRIGHT CRAY INC.
* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <ffio.h>
#include "usrio.h"

/*
* trace positioning requests
*/

_ffseek_t
_usr_pos(struct fdinfo *fio, int cmd, void *arg, int len, struct ffsw *stat)

{
struct fdinfo *llfio;
struct trace_f *usr_info;
_ffseek_t ret;

llfio = fio->fioptr;
usr_info = (struct trace_f *)fio->lyr_info;

_usr_enter(fio,TRC_POS);
_usr_info(fio, " ", 0);
ret = XRCALL(llfio, posrtn) llfio, cmd, arg, len, stat);
_usr_exit_sk(fio, ret, stat);
return(ret);
}

static char USMID[] = "@(#)code/usrprint.c 1.1 ";

/* COPYRIGHT CRAY INC.
* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <stdio.h>
#include <ffio.h>
#include "usrio.h"

static char *name_tab[] =
{
"???",
"ffopen",
"ffread",
"ffreadc",
"ffwrite",
"ffwritec",
"ffclose",
"ffflush",
"ffweof",
"ffweod",
"ffseek",
"ffbksp",
"fflistio",
"fffcntl",
};

280 S–3901–71

Creating a user Layer [15]

/*
* trace printing stuff
*/

int
_usr_enter(struct fdinfo *fio, int opcd)

{
char buf[256], *op;
struct trace_f *usr_info;

op = name_tab[opcd];
usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf, "TRCE: %s ",op);
write(usr_info->usrfd, buf, strlen(buf));
return(0);
}

void
_usr_info(struct fdinfo *fio, char *str, int arg1)

{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf, str, arg1);
write(usr_info->usrfd, buf, strlen(buf));
}

void
_usr_exit(struct fdinfo *fio, int ret, struct ffsw *stat)

{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
fio->ateof = fio->fioptr->ateof;
fio->ateod = fio->fioptr->ateod;
sprintf(buf, "TRCX: ret=%d, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);
write(usr_info->usrfd, buf, strlen(buf));
}

void
_usr_exit_ss(struct fdinfo *fio, ssize_t ret, struct ffsw *stat)

{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
fio->ateof = fio->fioptr->ateof;
fio->ateod = fio->fioptr->ateod;
sprintf(buf, "TRCX: ret=%ld, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);
write(usr_info->usrfd, buf, strlen(buf));
}

void
_usr_exit_ff(struct fdinfo *fio, _ffopen_t ret, struct ffsw *stat)

S–3901–71 281

Cray Fortran Reference Manual

{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf, "TRCX: ret=%d, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);
write(usr_info->usrfd, buf, strlen(buf));

}
void
_usr_exit_sk(struct fdinfo *fio, _ffseek_t ret, struct ffsw *stat)

{
char buf[256];
struct trace_f *usr_info;
usr_info = (struct trace_f *)fio->lyr_info;
fio->ateof = fio->fioptr->ateof;
fio->ateod = fio->fioptr->ateod;
sprintf(buf, "TRCX: ret=%ld, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);
#endif

write(usr_info->usrfd, buf, strlen(buf));
}

void
_usr_pr_rwc(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp)

{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf,"(fd / %lx */, &memc[%lx], %ld, &statw[%lx], ",

fio, BPTR2CP(bufptr), nbytes, stat);
write(usr_info->usrfd, buf, strlen(buf));
if (fulp == FULL)

sprintf(buf,"FULL");
else

sprintf(buf,"PARTIAL");
write(usr_info->usrfd, buf, strlen(buf));

}
void
_usr_pr_rww(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp,
int *ubc)

{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf,"(fd / %lx */, &memc[%lx], %ld, &statw[%lx], ",

fio, BPTR2CP(bufptr), nbytes, stat);

282 S–3901–71

Creating a user Layer [15]

write(usr_info->usrfd, buf, strlen(buf));
if (fulp == FULL)

sprintf(buf,"FULL");
else
sprintf(buf,"PARTIAL");
write(usr_info->usrfd, buf, strlen(buf));
sprintf(buf,", &conubc[%d]; ", *ubc);
write(usr_info->usrfd, buf, strlen(buf));
}

void
_usr_pr_2p(struct fdinfo *fio, struct ffsw *stat)

{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf,"(fd / %lx */, &statw[%lx], ",

fio, stat);
write(usr_info->usrfd, buf, strlen(buf));
}

S–3901–71 283

Cray Fortran Reference Manual

static char USMID[] = "@(#)code/usrread.c 1.0 ";
/* COPYRIGHT CRAY INC.
* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <ffio.h>
#include "usrio.h"

/*
* trace read requests
*
* Parameters:
* fio - Pointer to fdinfo block
* bufptr - bit pointer to where data is to go.
* nbytes - Number of bytes to be read
* stat - pointer to status return word
* fulp - full or partial read mode flag
* ubc - pointer to unused bit count
*/

ssize_t
_usr_read(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp,
int *ubc)

{
struct fdinfo *llfio;
char *str;
ssize_t ret;
llfio = fio->fioptr;
_usr_enter(fio, TRC_READ);
_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);
ret = XRCALL(llfio, readrtn) llfio, bufptr, nbytes, stat,

fulp, ubc);
_usr_exit_ss(fio, ret, stat);
return(ret);
}

284 S–3901–71

Creating a user Layer [15]

/*
* trace reada (asynchronous read) requests
*
* Parameters:
* fio - Pointer to fdinfo block
* bufptr - bit pointer to where data is to go.
* nbytes - Number of bytes to be read
* stat - pointer to status return word
* fulp - full or partial read mode flag
* ubc - pointer to unused bit count
*/

ssize_t
_usr_reada(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp,
int *ubc)

{
struct fdinfo *llfio;
char *str;
ssize_t ret;

llfio = fio->fioptr;
_usr_enter(fio, TRC_READA);
_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);
ret = XRCALL(llfio,readartn)llfio,bufptr,nbytes,stat,fulp,ubc);
_usr_exit_ss(fio, ret, stat);
return(ret);
}

S–3901–71 285

Cray Fortran Reference Manual

/*
* trace readc requests
*
* Parameters:
* fio - Pointer to fdinfo block
* bufptr - bit pointer to where data is to go.
* nbytes - Number of bytes to be read
* stat - pointer to status return word
* fulp - full or partial read mode flag
*/
ssize_t
_usr_readc(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp)

{
struct fdinfo *llfio;
char *str;
ssize_t ret;
llfio = fio->fioptr;
_usr_enter(fio, TRC_READC);
_usr_pr_rwc(fio, bufptr, nbytes, stat, fulp);
ret = XRCALL(llfio, readcrtn)llfio, bufptr, nbytes, stat,

fulp);
_usr_exit_ss(fio, ret, stat);
return(ret);

}

/*
* _usr_seek()
*
* The user seek call should mimic the lseek system call as
* much as possible.
*/
_ffseek_t
_usr_seek(
struct fdinfo *fio,
off_t pos,
int whence,
struct ffsw *stat)

{
struct fdinfo *llfio;
_ffseek_t ret;
char buf[256];

llfio = fio->fioptr;
_usr_enter(fio, TRC_SEEK);
sprintf(buf,"pos %ld, whence %d\n", pos, whence);
_usr_info(fio, buf, 0);
ret = XRCALL(llfio, seekrtn) llfio, pos, whence, stat);
_usr_exit_sk(fio, ret, stat);
return(ret);
}

286 S–3901–71

Creating a user Layer [15]

static char USMID[] = "@(#)code/usrwrite.c 1.0 ";

/* COPYRIGHT CRAY INC.
* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <ffio.h>
#include "usrio.h"

/*
* trace write requests
*
* Parameters:
* fio - Pointer to fdinfo block
* bufptr - bit pointer to where data is to go.
* nbytes - Number of bytes to be written
* stat - pointer to status return word
* fulp - full or partial write mode flag
* ubc - pointer to unused bit count (not used for IBM)
*/
ssize_t
_usr_write(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp,
int *ubc)

{
struct fdinfo *llfio;
ssize_t ret;

llfio = fio->fioptr;
_usr_enter(fio, TRC_WRITE);
_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);
ret = XRCALL(llfio, writertn) llfio, bufptr, nbytes, stat,

fulp,ubc);
_usr_exit_ss(fio, ret, stat);
return(ret);
}

S–3901–71 287

Cray Fortran Reference Manual

/*
* trace writea requests
*
* Parameters:
* fio - Pointer to fdinfo block
* bufptr - bit pointer to where data is to go.
* nbytes - Number of bytes to be written
* stat - pointer to status return word
* fulp - full or partial write mode flag
* ubc - pointer to unused bit count (not used for IBM)
*/
ssize_t
_usr_writea(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp,
int *ubc)

{
struct fdinfo *llfio;
ssize_t ret;

llfio = fio->fioptr;
_usr_enter(fio, TRC_WRITEA);
_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);
ret = XRCALL(llfio, writeartn) llfio, bufptr, nbytes, stat,

fulp,ubc);
_usr_exit_ss(fio, ret, stat);
return(ret);
}

288 S–3901–71

Creating a user Layer [15]

/*
* trace writec requests
*
* Parameters:
* fio - Pointer to fdinfo block
* bufptr - bit pointer to where data is to go.
* nbytes - Number of bytes to be written
* stat - pointer to status return word
* fulp - full or partial write mode flag
*/

ssize_t
_usr_writec(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp)

{
struct fdinfo *llfio;
ssize_t ret;

llfio = fio->fioptr;
_usr_enter(fio, TRC_WRITEC);
_usr_pr_rwc(fio, bufptr, nbytes, stat, fulp);
ret = XRCALL(llfio, writecrtn)llfio,bufptr, nbytes, stat,

fulp);
_usr_exit_ss(fio, ret, stat);
return(ret);
}

/*
* Flush the buffer and clean up
* This routine should return 0, or -1 on error.
*/
int
_usr_flush(struct fdinfo *fio, struct ffsw *stat)

{
struct fdinfo *llfio;
int ret;
llfio = fio->fioptr;

_usr_enter(fio, TRC_FLUSH);
_usr_info(fio, "\n",0);
ret = XRCALL(llfio, flushrtn) llfio, stat);
_usr_exit(fio, ret, stat);
return(ret);
}

S–3901–71 289

Cray Fortran Reference Manual

/*
* trace WEOF calls
*
* The EOF is a very specific concept. Don't confuse it with the
* EOF, or the truncate(2) system call.
*/
int
_usr_weof(struct fdinfo *fio, struct ffsw *stat)

{
struct fdinfo *llfio;
int ret;

llfio = fio->fioptr;
_usr_enter(fio, TRC_WEOF);
_usr_info(fio, "\n",0);
ret = XRCALL(llfio, weofrtn) llfio, stat);
_usr_exit(fio, ret, stat);
return(ret);
}

/*
* trace WEOD calls
*
* The EOD is a specific concept. Don't confuse it with the
* EOF. It is usually mapped to the truncate(2) system call.
*/
int
_usr_weod(struct fdinfo *fio, struct ffsw *stat)

{
struct fdinfo *llfio;
int ret;

llfio = fio->fioptr;
_usr_enter(fio, TRC_WEOD);
_usr_info(fio, "\n",0);
ret = XRCALL(llfio, weodrtn) llfio, stat);
_usr_exit(fio, ret, stat);
return(ret);
}

/* USMID @(#)code/usrio.h 1.1 */

/* COPYRIGHT CRAY INC.
* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#define TRC_OPEN 1
#define TRC_READ 2
#define TRC_READA 3
#define TRC_READC 4
#define TRC_WRITE 5
#define TRC_WRITEA 6
#define TRC_WRITEC 7
#define TRC_CLOSE 8
#define TRC_FLUSH 9
#define TRC_WEOF 10
#define TRC_WEOD 11

290 S–3901–71

Creating a user Layer [15]

#define TRC_SEEK 12
#define TRC_BKSP 13
#define TRC_POS 14
#define TRC_UNUSED 15
#define TRC_FCNTL 16

struct trace_f
{
char *name; /* name of the file */
int usrfd; /* file descriptor of trace file */
};

/*
* Prototypes
*/

extern int _usr_bksp(struct fdinfo *fio, struct ffsw *stat);
extern int _usr_close(struct fdinfo *fio, struct ffsw *stat);
extern int _usr_fcntl(struct fdinfo *fio, int cmd, void *arg,

struct ffsw *stat);
extern _ffopen_t _usr_open(const char *name, int flags,

mode_t mode, struct fdinfo * fio, union spec_u *spec,
struct ffsw *stat, long cbits, int cblks,
struct gl_o_inf *oinf);

extern int _usr_flush(struct fdinfo *fio, struct ffsw *stat);
extern _ffseek_t _usr_pos(struct fdinfo *fio, int cmd, void *arg,

int len, struct ffsw *stat);
extern ssize_t _usr_read(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);
extern ssize_t _usr_reada(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);
extern ssize_t _usr_readc(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp);
extern _ffseek_t _usr_seek(struct fdinfo *fio, off_t pos, int whence,

struct ffsw *stat);
extern ssize_t _usr_write(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);
extern ssize_t _usr_writea(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);
extern ssize_t _usr_writec(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp);
extern int _usr_weod(struct fdinfo *fio, struct ffsw *stat);
extern int _usr_weof(struct fdinfo *fio, struct ffsw *stat);
extern int _usr_err();

/*
* Prototypes for routines that are used by the user layer.
*/

extern int _usr_enter(struct fdinfo *fio, int opcd);
extern void _usr_info(struct fdinfo *fio, char *str, int arg1);
extern void _usr_exit(struct fdinfo *fio, int ret, struct ffsw *stat);
extern void _usr_exit_ss(struct fdinfo *fio, ssize_t ret,

struct ffsw *stat);
extern void _usr_exit_ff(struct fdinfo *fio, _ffopen_t ret,

struct ffsw *stat);
extern void _usr_exit_sk(struct fdinfo *fio, _ffseek_t ret,

struct ffsw *stat);
extern void _usr_pr_rww(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);
extern void _usr_pr_2p(struct fdinfo *fio, struct ffsw *stat);

S–3901–71 291

Cray Fortran Reference Manual

292 S–3901–71

Named Pipe Support [16]

Named pipes, or UNIX FIFO special files for I/O requests, are created with the
mknod(2) system call; these special files allow any two processes to exchange
information. The system call creates an inode for the named pipe and establishes it
as a named pipe that can be read to or written from. It can then be used by standard
Fortran I/O or C I/O. Piped I/O is faster than normal I/O and requires less memory
than memory-resident files.

Fortran programs can communicate with each other using named pipes. After a
named pipe is created, Fortran programs can access that pipe almost as if it were a
normal file. The unique aspects of process communication using named pipes are
discussed in the following list; the examples show how a Fortran program can use
standard Fortran I/O on pipes:

• A named pipe must be created before a Fortran program opens it. The following
syntax for the command creates a named pipe called fort.13. The p argument
makes it a pipe.

/bin/mknod fort.13 p

A named pipe can be created from within a Fortran program by using the
pxfsystem function. The following example creates a named pipe:

INTEGER ILEN,IERROR
ILEN=0
CALL PXFSYSTEM ('/bin/mknod fort.13 p',ILEN,IERROR)

• Fortran programs can use two named pipes: one to read and one to write. A
Fortran program can read from or write to any named pipe, but it cannot do both
at the same time. This is a Fortran restriction on pipes, not a system restriction. It
occurs because Fortran does not allow read and write access at the same time.

• I/O transfers through named pipes use memory for buffering. A separate buffer is
created for each named pipe. The PIPE_BUF parameter defines the kernel buffer
size in the /sys/param.h parameter file. The default value of PIPE_BUF is 8
blocks (8 * 512 words), but the full size may not be needed or used.

I/O to named pipes does not transfer to or from a disk. However, if I/O transfers
fill the buffer, the writing process waits for the receiving process to read the data
before refilling the buffer. If the size of the PIPE_BUF parameter is increased,
buffer contention may cause a decrease in I/O performance. If memory has
already been allocated for buffers, more space will not be allocated.

S–3901–71 293

Cray Fortran Reference Manual

• Binary data transferred between two processes through a named pipe must use
the correct file structure. The sending process should specify an undefined file
structure (assign -s u) for a pipe. The receiving process should specify an
unblocked structure (assign -s unblocked) for a pipe.

You can also select a file specification of system (assign -F system)
for the sending process.

The file structure of the receiving or read process can be set to either an undefined
or an unblocked file structure. However, if the sending process writes a request
that is larger than PIPE_BUF, it is essential for the receiving process to read the
data from a pipe set to an unblocked file structure. A read of a transfer larger
than PIPE_BUF on an undefined file structure yields only the amount of data
specified by PIPE_BUF. The receiving process does not wait to see whether the
sending process is refilling the buffer. The pipe may be less than the value of
PIPE_BUF.

For example, the following assign commands specify that the file structure
of the named pipe (unit 13, file name pipe) for the sending process should
be undefined (-s u). The named pipe (unit 15, file name pipe) is type
unblocked (-s unblocked) for the read process.

assign -s u -a pipe u:13
assign -s unblocked -a pipe u:15

• A read from a pipe that is closed by the sender causes an end-of-file (EOF).
To detect EOF on a named pipe, the pipe must be opened as read-only by the
receiving process. The remainder of this chapter presents more information about
detecting EOF.

16.1 Piped I/O Example without End-of-file Detection
In this example, two Fortran programs communicate without end-of-file (EOF)
detection. Program writerd generates an array, which contains the elements 1 to
3, and writes the array to named pipe pipe1. Program readwt reads the three
elements from named pipe pipe1, prints out the values, adds 1 to each value, and
writes the new elements to named pipe pipe2. Program writerd reads the new
values from named pipe pipe2 and prints them. The -a option of the assign
command allows the two processes to access the same file with different assign
characteristics.

294 S–3901–71

Named Pipe Support [16]

Example 7. No EOF Detection: program writerd

program writerd
parameter(n=3)
dimension ia(n)
do 10 i=1,n

ia(i)=i
10 continue

write (10) ia
read (11) ia
do 20 i=1,n

print*,'ia(',i,') is ',ia(i),' in writerd'
20 continue

end

Example 8. No EOF Detection: program readwt

program readwt
parameter(n=3)
dimension ia(n)
read (15) ia
do 10 i=1,n

print*,'ia(',i,') is ',ia(i),' in readwt'
ia(i)=ia(i)+1

10 continue
write (16) ia
end

The following command sequence executes the programs:

ftn -o readwt readwt.f
ftn -o writerd writerd.f
/bin/mknod pipe1 p
/bin/mknod pipe2 p
assign -s u -a pipe1 u:10
assign -s unblocked -a pipe2 u:11
assign -s unblocked -a pipe1 u:15
assign -s u -a pipe2 u:16
readwt &
writerd

The output of the two programs is:

ia(1) is 1 in readwt
ia(2) is 2 in readwt
ia(3) is 3 in readwt
ia(1) is 2 in writerd
ia(2) is 3 in writerd
ia(3) is 4 in writerd

S–3901–71 295

Cray Fortran Reference Manual

16.2 Detecting End-of-file on a Named Pipe
The following conditions must be met to detect end-of-file on a read from a named
pipe within a Fortran program:

• The program that sends data must open the pipe in a specific way, and the
program that receives the data must open the pipe as read-only.

• The program that sends or writes the data must open the named pipe as
read-and-write or write-only. Read-and-write is the default because the
/bin/mknod command creates a named pipe with read-and-write permission.

• The program that receives or reads the data must open the pipe as read-only. A
read from a named pipe that is opened as read-and-write waits indefinitely for
the data being sent.

16.3 Piped I/O Example with End-of-file Detection
This example uses named pipes for communication between two Fortran programs
with end-of-file detection. The programs in this example are similar to the programs
used in the preceding section. This example shows that program readwt can detect
the EOF.

Program writerd generates array ia and writes the data to the named pipe pipe1.
Program readwt reads the data from the named pipe pipe1, prints the values,
adds one to each value, and writes the new elements to named pipe pipe2. Program
writerd reads the new values from pipe2 and prints them. Finally, program
writerd closes pipe1 and causes program readwt to detect the EOF.

This command sequence executes these programs:

ftn -o readwt readwt.f
ftn -o writerd writerd.f
assign -s u -a pipe1 u:10
assign -s unblocked -a pipe2 u:11
assign -s unblocked -a pipe1 u:15
assign -s u -a pipe2 u:16
/bin/mknod pipe1 p
/bin/mknod pipe2 p
readwt &
writerd

296 S–3901–71

Named Pipe Support [16]

Example 9. EOF Detection: program writerd

program writerd
parameter(n=3)
dimension ia(n)
do 10 i=1,n

ia(i)=i
10 continue

write (10) ia
read (11) ia
do 20 i=1,n

print*,'ia(',i,') is',ia(i),' in writerd'
20 continue

close (10)
end

Example 10. EOF Detection: program readwt

program readwt
parameter(n=3)
dimension ia(n)

C open the pipe as read-only
open(15,form='unformatted', action='read')
read (15,end = 101) ia
do 10 i=1,n

print*,'ia(',i,') is ',ia(i),' in readwt'
ia(i)=ia(i)+1

10 continue
write (16) ia
read (15,end = 101) ia
goto 102

101 print *,'End of file detected'
102 continue

end

This is the output of the two programs:

ia(1) is 1 in readwt
ia(2) is 2 in readwt
ia(3) is 3 in readwt
ia(1) is 2 in writerd
ia(2) is 3 in writerd
ia(3) is 4 in writerd
End of file detected

S–3901–71 297

Cray Fortran Reference Manual

298 S–3901–71

Glossary

blade

1) A field-replaceable physical entity. A Cray XT service blade consists of AMD
Opteron sockets, memory, Cray SeaStar chips, PCI-X or PCIe cards, and a blade
control processor. A Cray XT compute blade consists of AMD Opteron sockets,
memory, Cray SeaStar chips, and a blade control processor. A Cray X2 compute
blade consists of eight Cray X2 chips (CPU and network access links), two voltage
regulator modules (VRM) per CPU, 32 memory daughter cards, a blade controller for
supervision, and a back panel connector. 2) From a system management perspective,
a logical grouping of nodes and blade control processor that monitors the nodes on
that blade.

class

A group of service nodes of a particular type, such as login or I/O. See also
specialization.

compute node

A node that runs application programs. A compute node performs only computation;
system services cannot run on compute nodes. Compute nodes run a specified kernel
to support either scalar or vector applications. See also node; service node.

Cray Linux Environment (CLE)

The operating system for Cray XT systems.

CrayDoc

Cray's documentation system for accessing and searching Cray books, man pages,
and glossary terms from a web browser.

deferred implementation

The label used to introduce information about a feature that will not be implemented
until a later release.

S–3901–71 299

Cray Fortran Reference Manual

login node

The service node that provides a user interface and services for compiling and
running applications.

module

See blade.

module file

A metafile that defines information specific to an application or collection of
applications. (This term is not related to the module statement of the Fortran
language; it is related to setting up the Cray system environment.) For example,
to define the paths, command names, and other environment variables to use the
Programming Environment for Cray X1 series systems, use the module file PrgEnv,
which contains the base information needed for application compilations. Similarly,
to define the paths, command names, and other environment variables to use the
Programming Environment for Cray X2 systems, use the module file PrgEnv-x2.
The module file mpt sets a number of environment variables needed for message
passing and data passing application development.

Modules

A package on a Cray system that enables you to modify the user environment
dynamically by using module files. (This term is not related to the module statement
of the Fortran language; it is related to setting up the Cray system environment.) The
user interface to this package is the module command, which provides a number of
capabilities to the user including loading a module file, unloading a module file,
listing which module files are loaded, determining which module files are available
for use, and others. For example, the module command can be used to load a
specific compiler and its associated libraries, or even a particular version of a specific
compiler.

node

For Cray Linux Environment (CLE) systems, the logical group of processor(s),
memory, and network components acting as a network end point on the system
interconnection network. See also processing element.

parallel processing

Processing in which multiple processors work on a single application simultaneously.

processing element

The smallest physical compute group. There are two types of processing elements: a

300 S–3901–71

Glossary

compute processing element consists of an AMD Opteron processor, memory, and
a link to a Cray SeaStar chip. A service processing element consists of an AMD
Opteron processor, memory, a link to a Cray SeaStar chip, and PCI-X or PCIe links.

service node

A node that performs support functions for applications and system services. Service
nodes run SUSE LINUX and perform specialized functions. There are six types of
predefined service nodes: login, IO, network, boot, database, and syslog.

specialization

The process of setting files on the shared-root file system so that unique files can
exist for a node or for a class of nodes.

TotalView

A symbolic source-level debugger designed for debugging the multiple processes
of parallel Fortran, C, or C++ programs.

S–3901–71 301

	Cray Fortran Reference Manual
	New Features
	Introduction [1]
	1.1 The Cray Fortran Programming Environment
	1.2 Cray Fortran Compiler Messages
	1.3 Document-specific Conventions
	1.4 Fortran Standard Compatibility
	1.4.1 Fortran 95 Compatibility
	1.4.2 Fortran 90 Compatibility

	1.5 Related Fortran Publications

	Invoking the Cray Fortran Compiler [2]
	2.1 -A module_name [, module_name] ...
	2.2 -b bin_obj_file
	2.3 -c
	2.4 -d disable and -e enable
	2.5 -D identifier [=value]
	2.6 -f source_form
	2.7 -F
	2.8 -g
	2.9 -G debug_lvl
	2.10 -h arg
	2.10.1 -h [no]autothread
	2.10.2 -h cachen
	2.10.3 -h [no]caf
	2.10.4 -h cpu=target_system
	2.10.5 -h display_opt
	2.10.6 -h [no]dwarf
	2.10.7 -h func_trace
	2.10.8 -h keepfiles
	2.10.9 -h [no]msgs
	2.10.10 -h [no]negmsgs
	2.10.11 -h network=nic
	2.10.12 -h [no]omp
	2.10.13 -h [no]omp_trace
	2.10.14 -h page_align_allocate
	2.10.15 -h profile_generate
	2.10.16 -h [no]second_underscore
	2.10.17 -h threadn

	2.11 -I incldir
	2.12 -J dir_name
	2.13 -l libname
	2.14 -L ldir
	2.15 -m msg_lvl
	2.16 -M msgs
	2.17 -N col
	2.18 -O opt [,opt] ...
	2.18.1 -O n
	2.18.2 -O [no]aggress
	2.18.3 -O cachen
	2.18.4 -O fpn
	2.18.5 -O fusionn
	2.18.6 -O inlinelib
	2.18.7 -O ipan and -O ipafrom=source[:source] ...
	2.18.7.1 Automatic Inlining
	2.18.7.2 Explicit Inlining
	2.18.7.3 Combined Inlining

	2.18.8 -O [no]modinline
	2.18.9 -O [no]msgs
	2.18.10 -O [no]negmsgs
	2.18.11 -O nointerchange
	2.18.12 -O [no]omp
	2.18.13 -O [no]overindex
	2.18.14 -O [no]pattern
	2.18.15 -O scalarn
	2.18.16 -O shortcircuitn
	2.18.17 -O threadn
	2.18.18 -O unrolln
	2.18.19 -O vectorn
	2.18.20 -O [no]zeroinc

	2.19 -o out_file
	2.20 -p module_site[,module_site]
	2.21 -Q path
	2.22 -r list_opt
	2.23 -R runchk
	2.24 -s size
	2.24.1 Different Default Data Size Options on the Command Line
	2.24.2 Pointer Scaling Factor

	2.25 -S asm_file
	2.26 -T
	2.27 -U identifier [,identifier] ...
	2.28 -v
	2.29 -V
	2.30 -Wa"assembler_opt"
	2.31 -Wr"lister_opt"
	2.32 -x dirlist
	2.33 -X npes
	2.34 -Yphase,dirname
	2.35 --
	2.36 sourcefile[sourcefile.suffix ...]

	Setting Environment Variables [3]
	3.1 Compiler and Library Environment Variables
	3.1.1 CRAY_FTN_OPTIONS Environment Variable
	3.1.2 CRAY_PE_TARGET Environment Variable
	3.1.3 FORMAT_TYPE_CHECKING Environment Variable
	3.1.4 FORTRAN_MODULE_PATH Environment Variable
	3.1.5 LISTIO_PRECISION Environment Variable
	3.1.6 NLSPATH Environment Variable
	3.1.7 NPROC Environment Variable
	3.1.8 TMPDIR Environment Variable
	3.1.9 ZERO_WIDTH_PRECISION Environment Variable

	3.2 OpenMP Environment Variables
	3.3 Run Time Environment Variables
	3.3.1 aprun Resource Limits

	Using Cray Fortran Directives [4]
	4.1 Using Directives
	4.1.1 Directive Lines
	4.1.2 Range and Placement of Directives
	4.1.3 Interaction of Directives with the -x Command Line Option
	4.1.4 Command Line Options and Directives

	4.2 Vectorization Directives
	4.2.1 Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE
	4.2.2 Limit Optimizations: HAND_TUNED
	4.2.3 Ignore Vector Dependencies: IVDEP
	4.2.4 Specify Scalar Processing: NEXTSCALAR
	4.2.5 Request Pattern Matching: [NO]PATTERN
	4.2.6 Declare an Array with No Repeated Values: PERMUTATION
	4.2.7 Designate Loop Nest for Vectorization: PREFERVECTOR
	4.2.8 Conditional Density: PROBABILITY
	4.2.9 Allow Speculative Execution of Memory References within Loo
	4.2.10 Allow Speculative Execution of Memory References and Arith
	4.2.11 Designate Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP
	4.2.12 Provide More Information for Loops: LOOP_INFO
	4.2.13 Autothreading for Loops: LOOP_INFO PREFER_[NO]THREAD
	4.2.14 Unroll Loops: [NO]UNROLL
	4.2.15 Enable and Disable Vectorization: [NO]VECTOR
	4.2.16 Enable or Disable, Temporarily, Soft Vector-pipelining: [N

	4.3 Inlining Directives
	4.3.1 Disable or Enable Cloning for a Block of Code: [NO]CLONE an
	4.3.2 Disable or Enable Inlining for a Block of Code: [NO]INLINE
	4.3.3 Specify Inlining for a Procedure: INLINEALWAYS and INLINENE
	4.3.4 Create Inlinable Templates for Module Procedures: [NO]MODIN

	4.4 Scalar Optimization Directives
	4.4.1 Control Loop Interchange: [NO]INTERCHANGE
	4.4.2 Control Loop Collapse: [NO]COLLAPSE
	4.4.3 Determine Register Storage: NOSIDEEFFECTS
	4.4.4 Suppress Scalar Optimization: SUPPRESS

	4.5 Local Use of Compiler Features
	4.5.1 Check Array Bounds: [NO]BOUNDS
	4.5.2 Specify Source Form: FREE and FIXED

	4.6 Storage Directives
	4.6.1 Permit Cache Blocking: BLOCKABLE Directive
	4.6.2 Declare Cache Blocking: BLOCKINGSIZE and NOBLOCKING Directi
	4.6.3 Request Stack Storage: STACK

	4.7 Miscellaneous Directives
	4.7.1 Control Autothreading: [NO]AUTOTHREAD
	4.7.2 Allocate Cache: CACHE
	4.7.3 Non-temporal Reads and Writes: CACHE_NT
	4.7.4 Specify Array Dependencies: CONCURRENT
	4.7.5 Fuse Loops: [NO]FUSION
	4.7.6 Create Identification String: ID
	4.7.7 Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR
	4.7.8 External Name Mapping: NAME
	4.7.9 Preprocess Include File: PREPROCESS
	4.7.10 Specify Weak Procedure Reference: WEAK

	Source Preprocessing [5]
	5.1 General Rules
	5.2 Directives
	5.2.1 #include Directive
	5.2.2 #define Directive
	5.2.3 #undef Directive
	5.2.4 # (Null) Directive
	5.2.5 Conditional Directives
	5.2.5.1 #if Directive
	5.2.5.2 #ifdef Directive
	5.2.5.3 #ifndef Directive
	5.2.5.4 #elif Directive
	5.2.5.5 #else Directive
	5.2.5.6 #endif Directive

	5.3 Predefined Macros
	5.4 Command Line Options

	Using the OpenMP Fortran API [6]
	6.1 Limitations
	6.2 Differences
	6.3 Optimizations
	6.4 Compiler Options
	6.5 aprun Options

	Cray Fortran Defined Externals [7]
	7.1 Conformance Checks

	Cray Fortran Language Extensions [8]
	8.1 Characters, Lexical Tokens, and Source Form
	8.1.1 Characters Allowed in Names
	8.1.2 Switching Source Forms
	8.1.3 Continuation Line Limit
	8.1.4 D Lines in Fixed Source Form

	8.2 Types
	8.2.1 Alternate Form of LOGICAL Constants
	8.2.2 Cray Pointer Type
	8.2.3 Cray Character Pointer Type
	8.2.4 Boolean Type
	8.2.5 Alternate Form of ENUM Statement
	8.2.6 TYPEALIAS Statement

	8.3 Data Object Declarations and Specifications
	8.3.1 Attribute Specification Statements
	8.3.1.1 BOZ Constants in DATA Statements
	8.3.1.2 Attribute Respecification
	8.3.1.3 AUTOMATIC Attribute and Statement

	8.3.2 IMPLICIT Statement
	8.3.2.1 IMPLICIT Extensions

	8.3.3 Storage Association of Data Objects
	8.3.3.1 EQUIVALENCE Statement Extensions
	8.3.3.2 COMMON Statement Extensions

	8.4 Expressions and Assignment
	8.4.1 Expressions
	8.4.1.1 Rules for Forming Expressions
	8.4.1.2 Intrinsic and Defined Operations
	8.4.1.3 Intrinsic Operations
	8.4.1.4 Bitwise Logical Expressions

	8.4.2 Assignment

	8.5 Execution Control
	8.5.1 STOP Code Extension

	8.6 Input/Output Statements
	8.6.1 File Connection
	8.6.1.1 OPEN Statement

	8.7 Error, End-of-record, and End-of-file Conditions
	8.7.1 End-of-file Condition and the END-specifier
	8.7.1.1 Multiple End-of-file Records

	8.8 Input/Output Editing
	8.8.1 Data Edit Descriptors
	8.8.1.1 Integer Editing
	8.8.1.2 Real Editing
	8.8.1.3 Logical Editing
	8.8.1.4 Character Editing

	8.8.2 Control Edit Descriptors
	8.8.2.1 Q Editing

	8.8.3 List-directed Formatting
	8.8.3.1 List-directed Input

	8.8.4 Namelist Formatting
	8.8.4.1 Namelist Extensions

	8.8.5 I/O Editing

	8.9 Program Units
	8.9.1 Main Program
	8.9.1.1 Program Statement Extension

	8.9.2 Block Data Program Units
	8.9.2.1 Block Data Program Unit Extension

	8.10 Procedures
	8.10.1 Procedure Interface
	8.10.1.1 Interface Duplication

	8.10.2 Procedure Definition
	8.10.2.1 Recursive Function Extension
	8.10.2.2 Empty CONTAINS Sections

	8.11 Intrinsic Procedures and Modules
	8.11.1 Standard Generic Intrinsic Procedures
	8.11.1.1 Intrinsic Procedures

	8.12 Exceptions and IEEE Arithmetic
	8.12.1 The Exceptions
	8.12.1.1 IEEE Intrinsic Module Extensions

	8.13 Interoperability with C
	8.13.1 Interoperability Between Fortran and C Entities
	8.13.1.1 BIND(C) Syntax

	8.14 Coarrays
	8.15 Compiling and Executing Programs Containing Coarrays
	8.15.1 ftn and aprun Options Affecting Coarrays
	8.15.2 Using the CrayTools Tool Set with Coarray Programs
	8.15.2.1 Debugging Programs Containing Coarrays (Deferred impleme
	8.15.2.2 Analyzing Coarray Program Performance

	8.15.3 Interoperating with Other Message Passing and Data Passing
	8.15.4 Optimizing Programs with Coarrays

	8.16 Submodules

	Obsolete Features [9]
	9.1 IMPLICIT UNDEFINED
	9.2 Type Statement with *n
	9.3 BYTE Data Type
	9.4 DOUBLE COMPLEX Statement
	9.5 STATIC Attribute and Statement
	9.6 Slash Data Initialization
	9.7 DATA Statement Features
	9.8 Hollerith Data
	9.8.1 Hollerith Constants
	9.8.2 Hollerith Values
	9.8.3 Hollerith Relational Expressions

	9.9 PAUSE Statement
	9.10 ASSIGN, Assigned GO TO Statements, and Assigned Format Speci
	9.10.1 Form of the ASSIGN and Assigned GO TO Statements
	9.10.2 Assigned Format Specifiers

	9.11 Two-branch IF Statements
	9.11.1 Two-branch Arithmetic IF
	9.11.2 Indirect Logical IF

	9.12 Real and Double Precision DO Variables
	9.13 Nested Loop Termination
	9.14 Branching into a Block
	9.15 ENCODE and DECODE Statements
	9.15.1 ENCODE Statement
	9.15.2 DECODE Statement

	9.16 BUFFER IN and BUFFER OUT Statements
	9.17 Asterisk Delimiters
	9.18 Negative-valued X Descriptor
	9.19 A and R Descriptors for Noncharacter Types
	9.20 H Edit Descriptor
	9.21 Obsolete Intrinsic Procedures

	Cray Fortran Deferred Implementation and Optional Features [10]
	10.1 ISO_10646 Character Set
	10.2 Restrictions on Unlimited Polymorphic Variables
	10.3 ENCODING= in I/O Statements
	10.4 Allocatable Assignment (Optionally Enabled)

	Cray Fortran Implementation Specifics [11]
	11.1 Companion Processor
	11.2 INCLUDE Line
	11.3 INTEGER Kinds and Values
	11.4 REAL Kinds and Values
	11.5 DOUBLE PRECISION Kinds and Values
	11.6 LOGICAL Kinds and Values
	11.7 CHARACTER Kinds and Values
	11.8 Cray Pointers
	11.9 ENUM Kind
	11.10 Storage Issues
	11.10.1 Storage Units and Sequences
	11.10.2 Static and Stack Storage
	11.10.3 Dynamic Memory Allocation

	11.11 Finalization
	11.12 ALLOCATE Error Status
	11.13 DEALLOCATE Error Status
	11.14 ALLOCATABLE Module Variable Status
	11.15 Kind of a Logical Expression
	11.16 STOP Code Availability
	11.17 Stream File Record Structure and Position
	11.18 File Unit Numbers
	11.19 OPEN Specifiers
	11.20 FLUSH Statement
	11.21 Asynchronous I/O
	11.22 REAL I/O of an IEEE NaN
	11.22.1 Input of an IEEE NaN
	11.22.2 Output of an IEEE NaN

	11.23 List-directed and NAMELIST Output Default Formats
	11.24 Random Number Generator
	11.25 Timing Intrinsics
	11.26 IEEE Intrinsic Modules

	Enhanced I/O: Using the Assign Environment [12]
	12.1 Understanding the assign Environment
	12.1.1 Assign Objects and Open Processing
	12.1.2 assign Command Syntax
	12.1.3 Using the Library Routines

	12.2 Tuning File Connection Behavior
	12.2.1 Using Alternative File Names
	12.2.2 Specifying File Structure
	12.2.2.1 Unblocked File Structure
	12.2.2.2 assign -s sbin File Processing
	12.2.2.3 assign -s bin File Processing
	12.2.2.4 assign -s u File Processing
	12.2.2.5 text File Structure
	12.2.2.6 cos or blocked File Structure

	12.2.3 Specifying Buffer Behavior
	12.2.3.1 Default Buffer Sizes
	12.2.3.2 Library Buffering
	12.2.3.3 System Cache
	12.2.3.4 Unbuffered I/O

	12.2.4 Specifying Foreign File Formats
	12.2.5 Specifying Memory Resident Files
	12.2.6 Using and Suppressing File Truncation

	12.3 Defining the Assign Environment File
	12.4 Using Local Assign Mode

	Using Flexible File I/O (FFIO) [13]
	13.1 Understanding FFIO
	13.2 Using FFIO Layers
	13.2.1 Available I/O Layers
	13.2.2 Specifying Layered I/O Options

	13.3 Using FFIO with Common File Structures
	13.3.1 Reading and Writing Text Files
	13.3.2 Reading and Writing Unblocked Files
	13.3.3 Reading and Writing Fixed-length Records
	13.3.4 Reading and Writing Blocked Files

	13.4 Tips for Enhancing I/O Performance
	13.4.1 Buffer Size Considerations
	13.4.2 Removing Blocking
	13.4.2.1 The syscall Layer
	13.4.2.2 The bufa and cachea Layers
	13.4.2.3 The mr Layer
	13.4.2.4 The global Layer (Deferred Implementation)
	13.4.2.5 The cache Layer

	13.5 Sample Programs

	FFIO Layer Reference [14]
	14.1 Characteristics of Layers
	14.2 The bufa Layer
	14.3 The cache Layer
	14.4 The cachea Layer
	14.5 The cos Blocked Layer
	14.6 The event Layer
	14.7 The f77 Layer
	14.8 The fd Layer
	14.9 The global Layer (Deferred Implementation)
	14.10 The ibm Layer
	14.11 The mr Layer
	14.12 The null Layer
	14.13 The syscall Layer
	14.14 The system Layer
	14.15 The text Layer
	14.16 The user and site Layers
	14.17 The vms Layer

	Creating a user Layer [15]
	15.1 Internal Functions
	15.1.1 The Operations Structure
	15.1.2 FFIO and the stat Structure

	15.2 user Layer Example

	Named Pipe Support [16]
	16.1 Piped I/O Example without End-of-file Detection
	16.2 Detecting End-of-file on a Named Pipe
	16.3 Piped I/O Example with End-of-file Detection

	Glossary
	List of Figures
	Figure 1. Optimization Values
	Figure 2. Memory Use
	Figure 3. Access Methods and Default Buffer Sizes
	Figure 4. Typical Data Flow

	List of Examples
	Example 1. Unrolling outer loops
	Example 2. Illegal unrolling of outer loops
	Example 3. Unrolling nearest neighbor pattern
	Example 4. Local assign mode
	Example 5. Unformatted direct mr with unblocked file
	Example 6. Unformatted sequential mr with blocked file
	Example 7. No EOF Detection: program writerd
	Example 8. No EOF Detection: program readwt
	Example 9. EOF Detection: program writerd
	Example 10. EOF Detection: program readwt

	List of Tables
	Table 1. Compiling Options
	Table 2. Floating-point Optimization Levels
	Table 3. Automatic Inlining Specifications
	Table 4. File Types
	Table 5. Scaling Factor in Pointer Arithmetic
	Table 6. -Yphase Definitions
	Table 7. Directives
	Table 8. Explanation of Ignored TKRs
	Table 9. Operand Types and Results for Intrinsic Operations
	Table 10. Cray Fortran Intrinsic Bitwise Operators and the Allow
	Table 11. Data Types in Bitwise Logical Operations
	Table 12. Values for Keyword Specifier Variables in an OPEN Stat
	Table 13. Default Fractional and Exponent Digits
	Table 14. Summary of Control Edit Descriptors
	Table 15. Summary of Data Edit Descriptors
	Table 16. Default Compatibility Between I/O List Data Types and
	Table 17. RELAXED Compatibility Between Data Types and Data Edit
	Table 18. STRICT77 Compatibility Between Data Types and Data Edi
	Table 19. STRICT90 and STRICT95 Compatibility Between Data Types
	Table 20. Cray Fortran IEEE Intrinsic Module Extensions
	Table 21. Obsolete Features and Preferred Alternatives
	Table 22. Summary of String Edit Descriptors
	Table 23. Obsolete Procedures and Alternatives
	Table 24. Assign Object Open Processing
	Table 25. Fortran Access Methods and Options
	Table 26. Default Buffer Sizes for Fortran I/O Library Routines
	Table 27. FFIO Layers
	Table 28. Data Manipulation: bufa Layer
	Table 29. Supported Operations: bufa Layer
	Table 30. Data Manipulation: cache Layer
	Table 31. Supported Operations: cache Layer
	Table 32. Data Manipulation: cachea Layer
	Table 33. Supported Operations: cachea Layer
	Table 34. Data Manipulation: cos Layer
	Table 35. Supported Operations: cos Layer
	Table 36. Data Manipulation: f77 Layer
	Table 37. Supported Operations: f77 Layer
	Table 38. Data Manipulation: global Layer
	Table 39. Supported Operations: global Layer
	Table 40. Values for Maximum Record Size on ibm Layer
	Table 41. Values for Maximum Block Size in ibm Layer
	Table 42. Data Manipulation: ibm Layer
	Table 43. Supported Operations: ibm Layer
	Table 44. Data Manipulation: mr Layer
	Table 45. Supported Operations: mr Layer
	Table 46. Data Manipulation: syscall Layer
	Table 47. Supported Operations: syscall Layer
	Table 48. Data Manipulation: text Layer
	Table 49. Supported Operations: text Layer
	Table 50. Values for Record Size: vms Layer
	Table 51. Values for Maximum Block Size: vms Layer
	Table 52. Data Manipulation: vms Layer
	Table 53. Supported Operations: vms Layer
	Table 54. C Program Entry Points

